cortexcontour processing in the early visual

[1]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[2]  Michael S Landy,et al.  Orientation selectivity of motion-boundary responses in human visual cortex. , 2010, Journal of neurophysiology.

[3]  Hiroki Tanaka,et al.  Neural Basis for Stereopsis from Second-Order Contrast Cues , 2006, The Journal of Neuroscience.

[4]  Roger B. H. Tootell,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1992, Nature.

[5]  Guy A. Orban,et al.  Orientation discrimination of motion-defined gratings , 1994, Vision Research.

[6]  Isabelle Mareschal,et al.  A cortical locus for the processing of contrast-defined contours , 1998, Nature Neuroscience.

[7]  J. Anthony Movshon,et al.  Neuronal Responses to Texture-Defined Form in Macaque Visual Area V2 , 2011, The Journal of Neuroscience.

[8]  C. Baker,et al.  Temporal and spatial response to second-order stimuli in cat area 18. , 1998, Journal of neurophysiology.

[9]  Anders M. Dale,et al.  Representation of motion boundaries in retinotopic human visual cortical areas , 1997, Nature.

[10]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[11]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[12]  C. Baker,et al.  Processing of second-order stimuli in the visual cortex. , 2001, Progress in brain research.

[13]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[14]  R Fernald,et al.  An improved method for plotting retinal landmarks and focusing the eyes. , 1971, Vision research.

[15]  D. Regan,et al.  Dissociation of orientation discrimination from form detection for motion-defined bars and luminance-defined bars: Effects of dot lifetime and presentation duration , 1992, Vision Research.

[16]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  P. O. Bishop,et al.  Analysis of retinal correspondence by studying receptive fields of rinocular single units in cat striate cortex , 2004, Experimental Brain Research.

[18]  C. Baker,et al.  Envelope-responsive neurons in areas 17 and 18 of cat. , 1994, Journal of neurophysiology.

[19]  A. Leventhal,et al.  Neural correlates of boundary perception , 1998, Visual Neuroscience.

[20]  N. Issa,et al.  Subcortical Representation of Non-Fourier Image Features , 2010, The Journal of Neuroscience.

[21]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[22]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[23]  T D Albright,et al.  Form-cue invariant motion processing in primate visual cortex. , 1992, Science.

[24]  Alex R. Wade,et al.  The specificity of cortical region KO to depth structure , 2006, NeuroImage.

[25]  G. Mather,et al.  Evidence for second-order motion detectors , 1993, Vision Research.

[26]  K. Mardia Statistics of Directional Data , 1972 .

[27]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[28]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[29]  Rufin Vogels,et al.  Processing of kinetic boundaries in macaque V4. , 2006, Journal of neurophysiology.

[30]  R. Born Center-surround interactions in the middle temporal visual area of the owl monkey. , 2000, Journal of neurophysiology.

[31]  L. Palmer,et al.  Retinotopic organization of areas 18 and 19 in the cat , 1979, The Journal of comparative neurology.

[32]  B Rogers,et al.  Motion Parallax as an Independent Cue for Depth Perception , 1979, Perception.

[33]  I Mareschal,et al.  Cortical processing of second-order motion , 1999, Visual Neuroscience.

[34]  C L Baker,et al.  A processing stream in mammalian visual cortex neurons for non-Fourier responses. , 1993, Science.

[35]  C. Baker,et al.  Neuronal response to texture- and contrast-defined boundaries in early visual cortex , 2007, Visual Neuroscience.

[36]  Chaoyi Li,et al.  Cue‐invariant detection of centre–surround discontinuity by V1 neurons in awake macaque monkey , 2007, The Journal of physiology.

[37]  Ari Rosenberg,et al.  The Y Cell Visual Pathway Implements a Demodulating Nonlinearity , 2011, Neuron.

[38]  C L Baker,et al.  Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat. , 1996, Journal of neurophysiology.

[39]  R Vogels,et al.  Responses of monkey inferior temporal neurons to luminance-, motion-, and texture-defined gratings. , 1995, Journal of neurophysiology.

[40]  Andrew T. Smith,et al.  Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision , 1994, Vision Research.

[41]  Chang'an A Zhan,et al.  Boundary cue invariance in cortical orientation maps. , 2006, Cerebral cortex.

[42]  M. Georgeson,et al.  Does early non-linearity account for second-order motion? , 1999, Vision Research.

[43]  Tiande Shou,et al.  The responses to illusory contours of neurons in cortex areas 17 and 18 of the cats , 2001, Science in China Series C: Life Sciences.

[44]  G. Orban,et al.  Cue-invariant shape selectivity of macaque inferior temporal neurons. , 1993, Science.

[45]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[46]  Shin'ya Nishida,et al.  Dual multiple-scale processing for motion in the human visual System , 1997, Vision Research.

[47]  Leo L. Lui,et al.  Single-unit responses to kinetic stimuli in New World monkey area V2: Physiological characteristics of cue-invariant neurones , 2005, Experimental Brain Research.

[48]  G. Orban,et al.  Processing of kinetically defined boundaries in areas V1 and V2 of the macaque monkey. , 2000, Journal of neurophysiology.

[49]  D. Regan Orientation discrimination for objects defined by relative motion and objects defined by luminance contrast , 1989, Vision Research.

[50]  Michael S. Landy,et al.  Visual perception of texture , 2002 .

[51]  Curtis L Baker,et al.  Neural mechanisms mediating responses to abutting gratings: luminance edges vs. illusory contours. , 2006, Visual neuroscience.

[52]  M. Sur,et al.  Orientation Maps of Subjective Contours in Visual Cortex , 1996, Science.

[53]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[54]  T. Albright,et al.  Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1 , 1997, Visual Neuroscience.

[55]  Hugh R. Wilson,et al.  Non-Fourier Cortical Processes in Texture, Form, and Motion Perception , 1999 .

[56]  S. Zeki,et al.  The processing of kinetic contours in the brain. , 2003, Cerebral cortex.

[57]  R. Allard,et al.  Double dissociation between first- and second-order processing , 2007, Vision Research.

[58]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[59]  B. Skottun,et al.  Illusory contours and linear filters , 2004, Experimental Brain Research.