Time-Space Efficient Simulations of Quantum Computations

We give two time- and space-efficient simulations of quantum computations with intermediate measurements, one by classical randomized computations with unbounded error and the other by quantum computations that use an arbitrary fixed universal set of gates. Specifically, our simulations show that every language solvable by a bounded-error quantum algorithm running in time t and space s is also solvable by an unbounded-error randomized algorithm running in time O(t logt) and space O(s+ logt), as well as by a bounded-error quantum algorithm restricted to use an arbitrary universal set and running in time O(t polylogt) and space O(s+ logt), provided the universal set is closed under adjoint. We also develop a quantum model that is particularly suitable for the study of general computations with simultaneous time and space bounds. As an application of our randomized simulation, we obtain the first nontrivial lower bound for general quantum algorithms solving problems related to satisfiability. Our bound applies to MAJSAT and MAJMAJSAT, which are the problems of determining the truth

[1]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[2]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[3]  Lance Fortnow,et al.  Time-Space Tradeoffs for Satisfiability , 2000, J. Comput. Syst. Sci..

[4]  Lance Fortnow,et al.  Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..

[5]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[6]  Eric Allender,et al.  Relationships among PL, #L, and the determinant , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[7]  John Watrous,et al.  Space-Bounded Quantum Complexity , 1999, J. Comput. Syst. Sci..

[8]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[9]  Amin Mobasher,et al.  Quantum Dot Quantum Computation , 2007 .

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  Eric Allender,et al.  Counting Hierarchies: Polynomial Time and Constant Depth Circuits , 1993, Current Trends in Theoretical Computer Science.

[12]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[13]  B. Recht,et al.  Efficient discrete approximations of quantum gates , 2001, quant-ph/0111031.

[14]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[15]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[16]  W. Hesse Division is in Uniform TC 0 , 2001 .

[17]  Attila B. Nagy On an implementation of the Solovay-Kitaev algorithm , 2006 .

[18]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[19]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[20]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[21]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  William Hesse Division Is in Uniform TC0 , 2001, ICALP.

[23]  A. Ekert,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[24]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[25]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[26]  Eric Allender,et al.  Relationships Among PL, #L, and the Determinant , 1996, RAIRO Theor. Informatics Appl..

[27]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  Ryan Williams Inductive Time-Space Lower Bounds for Sat and Related Problems , 2007, computational complexity.

[30]  P. Oscar Boykin,et al.  A new universal and fault-tolerant quantum basis , 2000, Inf. Process. Lett..

[31]  A. C. Cem Say,et al.  Unbounded-error quantum computation with small space bounds , 2010, Inf. Comput..

[32]  A. Barenco A universal two-bit gate for quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[33]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[34]  Simon Perdrix,et al.  Classically controlled quantum computation , 2004, Mathematical Structures in Computer Science.

[35]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[36]  Richard J. Lipton,et al.  Time-space lower bounds for satisfiability , 2005, JACM.

[37]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[38]  Eric Allender,et al.  Time-space tradeoffs in the counting hierarchy , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[39]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[40]  Dieter van Melkebeek,et al.  A Survey of Lower Bounds for Satisfiability and Related Problems , 2007, Found. Trends Theor. Comput. Sci..

[41]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[42]  M D Barrett,et al.  Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System , 2005, Science.

[43]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[44]  Dieter van Melkebeek,et al.  Time-Space Lower Bounds for the Polynomial-Time Hierarchy on Randomized Machines , 2005, SIAM J. Comput..

[45]  John Watrous,et al.  On the complexity of simulating space-bounded quantum computations , 2004, computational complexity.

[46]  Richard Ryan Williams,et al.  Time-Space Tradeoffs for Counting NP Solutions Modulo Integers , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[47]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.