Transcription Factors Are Targeted by Differentially Expressed miRNAs in Primates

MicroRNAs (miRNAs) are small RNA molecules involved in the regulation of mammalian gene expression. Together with other transcription regulators, miRNAs modulate the expression of genes and thereby potentially contribute to tissue and species diversity. To identify miRNAs that are differentially expressed between tissues and/or species, and the genes regulated by these, we have quantified expression of miRNAs and messenger RNAs in five tissues from multiple human, chimpanzee, and rhesus macaque individuals using high-throughput sequencing. The breadth of this tissue and species data allows us to show that downregulation of target genes by miRNAs is more pronounced between tissues than between species and that downregulation is more pronounced for genes with fewer binding sites for expressed miRNAs. Intriguingly, we find that tissue- and species-specific miRNAs target transcription factor genes (TFs) significantly more often than expected. Through their regulatory effect on transcription factors, miRNAs may therefore exert an indirect influence on a larger proportion of genes than previously thought.

[1]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[2]  S. Pääbo,et al.  Parallel Patterns of Evolution in the Genomes and Transcriptomes of Humans and Chimpanzees , 2005, Science.

[3]  Philipp Khaitovich,et al.  MicroRNA-Driven Developmental Remodeling in the Brain Distinguishes Humans from Other Primates , 2011, PLoS biology.

[4]  N. Rajewsky,et al.  The evolution of gene regulation by transcription factors and microRNAs , 2007, Nature Reviews Genetics.

[5]  Martin Kircher,et al.  Improved base calling for the Illumina Genome Analyzer using machine learning strategies , 2009, Genome Biology.

[6]  N. Rajewsky,et al.  Discovering microRNAs from deep sequencing data using miRDeep , 2008, Nature Biotechnology.

[7]  Alexander E. Kel,et al.  MATCHTM: a tool for searching transcription factor binding sites in DNA sequences , 2003, Nucleic Acids Res..

[8]  N. Hayward,et al.  Characterization of the Melanoma miRNAome by Deep Sequencing , 2010, PloS one.

[9]  B. Nickel,et al.  Annotation of primate miRNAs by high throughput sequencing of small RNA libraries , 2012, BMC Genomics.

[10]  Dereje D. Jima,et al.  Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs. , 2010, Blood.

[11]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[12]  Erhard Rahm,et al.  FUNC: a package for detecting significant associations between gene sets and ontological annotations , 2007, BMC Bioinformatics.

[13]  Hui Zhou,et al.  Deep Sequencing of Human Nuclear and Cytoplasmic Small RNAs Reveals an Unexpectedly Complex Subcellular Distribution of miRNAs and tRNA 3′ Trailers , 2010, PloS one.

[14]  A. Sandelin,et al.  Hidden layers of human small RNAs , 2008, BMC Genomics.

[15]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[16]  Vesselin Baev,et al.  Computational identification of novel microRNA homologs in the chimpanzee genome , 2009, Comput. Biol. Chem..

[17]  M. D. Boer,et al.  Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia , 2011, Leukemia.

[18]  E. Wingender,et al.  MATCH: A tool for searching transcription factor binding sites in DNA sequences. , 2003, Nucleic acids research.

[19]  P. Zamore,et al.  Small silencing RNAs: an expanding universe , 2009, Nature Reviews Genetics.

[20]  Janet Kelso,et al.  PatMaN: rapid alignment of short sequences to large databases , 2008, Bioinform..

[21]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[22]  Wen-Hsiung Li,et al.  Lowly expressed human microRNA genes evolve rapidly. , 2009, Molecular biology and evolution.

[23]  Gregory J. Hannon,et al.  Small RNAs as Guardians of the Genome , 2009, Cell.

[24]  A. Aravin,et al.  PIWI-interacting small RNAs: the vanguard of genome defence , 2011, Nature Reviews Molecular Cell Biology.

[25]  L. Stubbs,et al.  Differences in human and chimpanzee gene expression patterns define an evolving network of transcription factors in brain , 2009, Proceedings of the National Academy of Sciences.

[26]  Ji Huang,et al.  [Serial analysis of gene expression]. , 2002, Yi chuan = Hereditas.

[27]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[28]  Boris Lenhard,et al.  RNAdb 2.0—an expanded database of mammalian non-coding RNAs , 2006, Nucleic Acids Res..

[29]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[30]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[31]  Danish Sayed,et al.  MicroRNAs in development and disease. , 2011, Physiological reviews.

[32]  Martin Reczko,et al.  Lost in translation: an assessment and perspective for computational microRNA target identification , 2009, Bioinform..

[33]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[34]  Christoph Flamm,et al.  The expansion of the metazoan microRNA repertoire , 2006, BMC Genomics.

[35]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[36]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[37]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[38]  Edwin Cuppen,et al.  Diversity of microRNAs in human and chimpanzee brain , 2006, Nature Genetics.

[39]  M. Brameier Genome-wide comparative analysis of microRNAs in three non-human primates , 2010, BMC Research Notes.

[40]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[41]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[42]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[43]  J. Yue,et al.  Identification of novel homologous microRNA genes in the rhesus macaque genome , 2008, BMC Genomics.

[44]  H. Horvitz,et al.  Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability , 2007, PLoS genetics.

[45]  Martin Hirst,et al.  High-resolution profiling and discovery of planarian small RNAs , 2009, Proceedings of the National Academy of Sciences.

[46]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[47]  M. Lachmann,et al.  MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. , 2010, Genome research.

[48]  P. Gunaratne,et al.  Discovery of Novel MicroRNAs in Female Reproductive Tract Using Next Generation Sequencing , 2010, PloS one.

[49]  S. Pääbo,et al.  MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains , 2011, PLoS genetics.

[50]  Janet Kelso,et al.  Positive selection on gene expression in the human brain , 2006, Current Biology.

[51]  Ravi Sachidanandam,et al.  A germline-specific class of small RNAs binds mammalian Piwi proteins , 2006, Nature.

[52]  M. King,et al.  Evolution at two levels in humans and chimpanzees. , 1975, Science.

[53]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[54]  Martin Kircher,et al.  Structural conservation versus functional divergence of maternally expressed microRNAs in the Dlk1/Gtl2 imprinting region , 2008, BMC Genomics.

[55]  Gerald J. Wyckoff,et al.  Molecular evolution of functional genes on the mammalian Y chromosome. , 2002, Molecular biology and evolution.

[56]  G. Hannon,et al.  The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race , 2007, Science.

[57]  Chung-I Wu,et al.  Evolution under canalization and the dual roles of microRNAs: a hypothesis. , 2009, Genome research.

[58]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[59]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[60]  Kai Zeng,et al.  Adaptive evolution of newly emerged micro-RNA genes in Drosophila. , 2008, Molecular biology and evolution.

[61]  J. Mattick The central role of RNA in human development and cognition , 2011, FEBS letters.

[62]  Eugene Berezikov,et al.  Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. , 2006, Genome research.

[63]  Jeffrey G. Reid,et al.  Expression profiling of microRNAs by deep sequencing , 2009, Briefings Bioinform..

[64]  O. Hobert Gene Regulation by Transcription Factors and MicroRNAs , 2008, Science.

[65]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[66]  Å. Borg,et al.  Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene. , 2011, Cancer research.

[67]  A. Aravin,et al.  Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline , 2001, Current Biology.

[68]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[69]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[70]  L. Goff,et al.  Ago2 Immunoprecipitation Identifies Predicted MicroRNAs in Human Embryonic Stem Cells and Neural Precursors , 2009, PloS one.