Variational quantum algorithms for trace distance and fidelity estimation

Estimating the difference between quantum data is crucial in quantum computing. However, as typical characterizations of quantum data similarity, the trace distance and quantum fidelity are believed to be exponentially-hard to evaluate in general. In this work, we introduce hybrid quantum–classical algorithms for these two distance measures on near-term quantum devices where no assumption of input state is required. First, we introduce the variational trace distance estimation (VTDE) algorithm. We in particular provide the technique to extract the desired spectrum information of any Hermitian matrix by local measurement. A novel variational algorithm for trace distance estimation is then derived from this technique, with the assistance of a single ancillary qubit. Notably, VTDE could avoid the barren plateau issue with logarithmic depth circuits due to a local cost function. Second, we introduce the variational fidelity estimation algorithm. We combine Uhlmann’s theorem and the freedom in purification to translate the estimation task into an optimization problem over a unitary on an ancillary system with fixed purified inputs. We then provide a purification subroutine to complete the translation. Both algorithms are verified by numerical simulations and experimental implementations, exhibiting high accuracy for randomly generated mixed states.

[1]  Sukin Sim,et al.  Noisy intermediate-scale quantum (NISQ) algorithms , 2021, Reviews of Modern Physics.

[2]  Avi Wigderson,et al.  Theory of computing: a scientific perspective , 1996, CSUR.

[3]  Patrick J. Coles,et al.  Large gradients via correlation in random parameterized quantum circuits , 2020, Quantum Science and Technology.

[4]  P. Calabrese,et al.  Subsystem Trace Distance in Quantum Field Theory. , 2019, Physical review letters.

[5]  Ronald de Wolf,et al.  A Survey of Quantum Learning Theory , 2017, ArXiv.

[6]  M. Gu,et al.  Universal and operational benchmarking of quantum memories , 2019, npj Quantum Information.

[7]  Pedro Chamorro-Posada,et al.  swap test and Hong-Ou-Mandel effect are equivalent , 2013, 1303.6814.

[8]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[9]  Filippo Caruso,et al.  How to enhance quantum generative adversarial learning of noisy information , 2020, New Journal of Physics.

[10]  John Watrous,et al.  Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..

[11]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[12]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[13]  R. Chaves,et al.  Quantifying Bell nonlocality with the trace distance. , 2017, 1709.04260.

[14]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[15]  Anirban Narayan Chowdhury,et al.  A Variational Quantum Algorithm for Preparing Quantum Gibbs States , 2020, 2002.00055.

[16]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[17]  Ying Li,et al.  Variational algorithms for linear algebra. , 2019, Science bulletin.

[18]  Quantum Digital Signatures , 2001, quant-ph/0105032.

[19]  Jingxiang Wu,et al.  Variational Thermal Quantum Simulation via Thermofield Double States. , 2018, Physical review letters.

[20]  Shu-Hao Wu,et al.  Quantum generative adversarial learning in a superconducting quantum circuit , 2018, Science Advances.

[21]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[22]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[23]  M. Cerezo,et al.  Effect of barren plateaus on gradient-free optimization , 2020, Quantum.

[24]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[25]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[26]  Yanjun Ma,et al.  PaddlePaddle: An Open-Source Deep Learning Platform from Industrial Practice , 2019 .

[27]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[28]  Farrokh Vatan,et al.  Realization of a General Three-Qubit Quantum Gate , 2004, quant-ph/0401178.

[29]  Edward Grant,et al.  An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.

[30]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[31]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[32]  Norbert M. Linke,et al.  Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer , 2017, Physical Review A.

[33]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[34]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[35]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[36]  W. Marsden I and J , 2012 .

[37]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[38]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[39]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[40]  Patrick J. Coles,et al.  Variational Hamiltonian Diagonalization for Dynamical Quantum Simulation , 2020, 2009.02559.

[41]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[42]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[43]  Alexei Y. Kitaev,et al.  Parallelization, amplification, and exponential time simulation of quantum interactive proof systems , 2000, STOC '00.

[44]  Jeongho Bang,et al.  Learning unknown pure quantum states , 2018, Physical Review A.

[45]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[46]  Xin Wang,et al.  Variational Quantum Singular Value Decomposition , 2020, ArXiv.

[47]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[48]  Masoud Mohseni,et al.  Layerwise learning for quantum neural networks , 2020, Quantum Machine Intelligence.

[49]  Xin Wang,et al.  VSQL: Variational Shadow Quantum Learning for Classification , 2020, AAAI.

[50]  Xin Wang,et al.  LOCCNet: a machine learning framework for distributed quantum information processing , 2021, ArXiv.

[51]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[52]  Paweł Horodecki,et al.  Direct estimations of linear and nonlinear functionals of a quantum state. , 2002, Physical review letters.

[53]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[54]  M. Wilde,et al.  Quantifying the unextendibility of entanglement , 2019, New Journal of Physics.

[55]  Mark M. Wilde,et al.  Cost of quantum entanglement simplified , 2020, Physical review letters.

[56]  Kunal Sharma,et al.  Trainability of Dissipative Perceptron-Based Quantum Neural Networks , 2020, ArXiv.

[57]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[58]  Mario Berta,et al.  The Fidelity of Recovery Is Multiplicative , 2015, IEEE Transactions on Information Theory.

[59]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[60]  Mark M. Wilde,et al.  Sequential decoding of a general classical-quantum channel , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  Keisuke Fujii,et al.  Sequential minimal optimization for quantum-classical hybrid algorithms , 2019, Physical Review Research.

[62]  Xin Wang,et al.  Variational quantum Gibbs state preparation with a truncated Taylor series , 2020, Physical Review Applied.

[63]  G. Vidal,et al.  Universal quantum circuit for two-qubit transformations with three controlled-NOT gates , 2003, quant-ph/0307177.

[64]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[65]  M. Cerezo,et al.  A semi-agnostic ansatz with variable structure for quantum machine learning , 2021, arXiv.org.

[66]  Victor Veitch,et al.  The resource theory of stabilizer quantum computation , 2013, 1307.7171.

[67]  Akira Sone,et al.  Cost-Function-Dependent Barren Plateaus in Shallow Quantum Neural Networks , 2020, ArXiv.

[68]  Ken M. Nakanishi,et al.  Subspace-search variational quantum eigensolver for excited states , 2018, Physical Review Research.

[69]  Marco Pistoia,et al.  A Domain-agnostic, Noise-resistant, Hardware-efficient Evolutionary Variational Quantum Eigensolver , 2019 .

[70]  Matteo G. A. Paris,et al.  Experimental investigation of initial system-environment correlations via trace-distance evolution , 2011, 1105.0174.

[71]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[72]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[74]  Mark M. Wilde,et al.  Efficiently computable bounds for magic state distillation , 2018, Physical review letters.

[75]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[76]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[77]  Xiao Yuan,et al.  Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.

[78]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[79]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[80]  Geoff J Pryde,et al.  A quantum Fredkin gate , 2016, Science Advances.

[81]  Simone Severini,et al.  Hierarchical quantum classifiers , 2018, npj Quantum Information.

[82]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[83]  Keiji Matsumoto A new quantum version of f-divergence , 2013, 1311.4722.

[84]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[85]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[86]  Diego Garc'ia-Mart'in,et al.  Quantum singular value decomposer , 2019, 1905.01353.

[87]  Runyao Duan,et al.  Irreversibility of Asymptotic Entanglement Manipulation Under Quantum Operations Completely Preserving Positivity of Partial Transpose. , 2016, Physical review letters.