Variational quantum algorithms for trace distance and fidelity estimation
暂无分享,去创建一个
Ranyiliu Chen | Xin Wang | Zhixin Song | Xuanqiang Zhao | Xin Wang | Xuanqiang Zhao | Ranyiliu Chen | Zhixin Song
[1] Sukin Sim,et al. Noisy intermediate-scale quantum (NISQ) algorithms , 2021, Reviews of Modern Physics.
[2] Avi Wigderson,et al. Theory of computing: a scientific perspective , 1996, CSUR.
[3] Patrick J. Coles,et al. Large gradients via correlation in random parameterized quantum circuits , 2020, Quantum Science and Technology.
[4] P. Calabrese,et al. Subsystem Trace Distance in Quantum Field Theory. , 2019, Physical review letters.
[5] Ronald de Wolf,et al. A Survey of Quantum Learning Theory , 2017, ArXiv.
[6] M. Gu,et al. Universal and operational benchmarking of quantum memories , 2019, npj Quantum Information.
[7] Pedro Chamorro-Posada,et al. swap test and Hong-Ou-Mandel effect are equivalent , 2013, 1303.6814.
[8] C. Gogolin,et al. Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.
[9] Filippo Caruso,et al. How to enhance quantum generative adversarial learning of noisy information , 2020, New Journal of Physics.
[10] John Watrous,et al. Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..
[11] Ievgeniia Oshurko. Quantum Machine Learning , 2020, Quantum Computing.
[12] Ryan Babbush,et al. The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.
[13] R. Chaves,et al. Quantifying Bell nonlocality with the trace distance. , 2017, 1709.04260.
[14] Alán Aspuru-Guzik,et al. A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.
[15] Anirban Narayan Chowdhury,et al. A Variational Quantum Algorithm for Preparing Quantum Gibbs States , 2020, 2002.00055.
[16] B. Terhal. Quantum error correction for quantum memories , 2013, 1302.3428.
[17] Ying Li,et al. Variational algorithms for linear algebra. , 2019, Science bulletin.
[18] Quantum Digital Signatures , 2001, quant-ph/0105032.
[19] Jingxiang Wu,et al. Variational Thermal Quantum Simulation via Thermofield Double States. , 2018, Physical review letters.
[20] Shu-Hao Wu,et al. Quantum generative adversarial learning in a superconducting quantum circuit , 2018, Science Advances.
[21] Keisuke Fujii,et al. Quantum circuit learning , 2018, Physical Review A.
[22] Serge Fehr,et al. On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.
[23] M. Cerezo,et al. Effect of barren plateaus on gradient-free optimization , 2020, Quantum.
[24] M. Rispoli,et al. Measuring entanglement entropy in a quantum many-body system , 2015, Nature.
[25] Harper R. Grimsley,et al. An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.
[26] Yanjun Ma,et al. PaddlePaddle: An Open-Source Deep Learning Platform from Industrial Practice , 2019 .
[27] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[28] Farrokh Vatan,et al. Realization of a General Three-Qubit Quantum Gate , 2004, quant-ph/0401178.
[29] Edward Grant,et al. An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.
[30] John Preskill,et al. Quantum Computing in the NISQ era and beyond , 2018, Quantum.
[31] Mark M. Wilde,et al. Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.
[32] Norbert M. Linke,et al. Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer , 2017, Physical Review A.
[33] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[34] G. Gour,et al. Quantum resource theories , 2018, Reviews of Modern Physics.
[35] M. Schuld,et al. Circuit-centric quantum classifiers , 2018, Physical Review A.
[36] W. Marsden. I and J , 2012 .
[37] M. Cerezo,et al. Variational quantum algorithms , 2020, Nature Reviews Physics.
[38] Peter D. Johnson,et al. Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.
[39] R. Cleve,et al. Quantum fingerprinting. , 2001, Physical review letters.
[40] Patrick J. Coles,et al. Variational Hamiltonian Diagonalization for Dynamical Quantum Simulation , 2020, 2009.02559.
[41] J. Gambetta,et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.
[42] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[43] Alexei Y. Kitaev,et al. Parallelization, amplification, and exponential time simulation of quantum interactive proof systems , 2000, STOC '00.
[44] Jeongho Bang,et al. Learning unknown pure quantum states , 2018, Physical Review A.
[45] David P. DiVincenzo,et al. Quantum information and computation , 2000, Nature.
[46] Xin Wang,et al. Variational Quantum Singular Value Decomposition , 2020, ArXiv.
[47] Martin B. Plenio,et al. An introduction to entanglement measures , 2005, Quantum Inf. Comput..
[48] Masoud Mohseni,et al. Layerwise learning for quantum neural networks , 2020, Quantum Machine Intelligence.
[49] Xin Wang,et al. VSQL: Variational Shadow Quantum Learning for Classification , 2020, AAAI.
[50] Xin Wang,et al. LOCCNet: a machine learning framework for distributed quantum information processing , 2021, ArXiv.
[51] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[52] Paweł Horodecki,et al. Direct estimations of linear and nonlinear functionals of a quantum state. , 2002, Physical review letters.
[53] John Watrous,et al. Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..
[54] M. Wilde,et al. Quantifying the unextendibility of entanglement , 2019, New Journal of Physics.
[55] Mark M. Wilde,et al. Cost of quantum entanglement simplified , 2020, Physical review letters.
[56] Kunal Sharma,et al. Trainability of Dissipative Perceptron-Based Quantum Neural Networks , 2020, ArXiv.
[57] M. Plenio,et al. Colloquium: quantum coherence as a resource , 2016, 1609.02439.
[58] Mario Berta,et al. The Fidelity of Recovery Is Multiplicative , 2015, IEEE Transactions on Information Theory.
[59] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[60] Mark M. Wilde,et al. Sequential decoding of a general classical-quantum channel , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[61] Keisuke Fujii,et al. Sequential minimal optimization for quantum-classical hybrid algorithms , 2019, Physical Review Research.
[62] Xin Wang,et al. Variational quantum Gibbs state preparation with a truncated Taylor series , 2020, Physical Review Applied.
[63] G. Vidal,et al. Universal quantum circuit for two-qubit transformations with three controlled-NOT gates , 2003, quant-ph/0307177.
[64] Marcello Benedetti,et al. Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.
[65] M. Cerezo,et al. A semi-agnostic ansatz with variable structure for quantum machine learning , 2021, arXiv.org.
[66] Victor Veitch,et al. The resource theory of stabilizer quantum computation , 2013, 1307.7171.
[67] Akira Sone,et al. Cost-Function-Dependent Barren Plateaus in Shallow Quantum Neural Networks , 2020, ArXiv.
[68] Ken M. Nakanishi,et al. Subspace-search variational quantum eigensolver for excited states , 2018, Physical Review Research.
[69] Marco Pistoia,et al. A Domain-agnostic, Noise-resistant, Hardware-efficient Evolutionary Variational Quantum Eigensolver , 2019 .
[70] Matteo G. A. Paris,et al. Experimental investigation of initial system-environment correlations via trace-distance evolution , 2011, 1105.0174.
[71] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[72] V. Vedral. The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.
[74] Mark M. Wilde,et al. Efficiently computable bounds for magic state distillation , 2018, Physical review letters.
[75] R. Jozsa. Fidelity for Mixed Quantum States , 1994 .
[76] John Watrous,et al. Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.
[77] Xiao Yuan,et al. Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.
[78] F. Petruccione,et al. An introduction to quantum machine learning , 2014, Contemporary Physics.
[79] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[80] Geoff J Pryde,et al. A quantum Fredkin gate , 2016, Science Advances.
[81] Simone Severini,et al. Hierarchical quantum classifiers , 2018, npj Quantum Information.
[82] Ying Li,et al. Theory of variational quantum simulation , 2018, Quantum.
[83] Keiji Matsumoto. A new quantum version of f-divergence , 2013, 1311.4722.
[84] Ryan Babbush,et al. Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.
[85] Alán Aspuru-Guzik,et al. The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.
[86] Diego Garc'ia-Mart'in,et al. Quantum singular value decomposer , 2019, 1905.01353.
[87] Runyao Duan,et al. Irreversibility of Asymptotic Entanglement Manipulation Under Quantum Operations Completely Preserving Positivity of Partial Transpose. , 2016, Physical review letters.