A Neurodynamical cortical model of visual attention and invariant object recognition

[1]  Edmund T Rolls,et al.  The Receptive Fields of Inferior Temporal Cortex Neurons in Natural Scenes , 2003, The Journal of Neuroscience.

[2]  Edmund T. Rolls,et al.  Invariant Object Recognition in the Visual System with Novel Views of 3D Objects , 2002, Neural Computation.

[3]  E. Rolls,et al.  Object‐based visual neglect: a computational hypothesis , 2002, The European journal of neuroscience.

[4]  Tai Sing Lee,et al.  A unified model of spatial and object attention based on inter-cortical biased competition , 2002, Neurocomputing.

[5]  Gustavo Deco,et al.  Large-scale neural model for visual attention: integration of experimental single-cell and fMRI data. , 2002, Cerebral cortex.

[6]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[7]  Richard B Buxton,et al.  Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas , 2001, Vision Research.

[8]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[9]  G. Deco,et al.  Top-down selective visual attention: A neurodynamical approach , 2001 .

[10]  E T Rolls,et al.  Invariant object recognition in the visual system with error correction and temporal difference learning , 2001, Network.

[11]  Edmund T. Rolls,et al.  A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures , 2000, Neural Computation.

[12]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[13]  E. Rolls Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition , 2000, Neuron.

[14]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[15]  Edmund T. Rolls,et al.  Position invariant recognition in the visual system with cluttered environments , 2000, Neural Networks.

[16]  R. Desimone,et al.  The Role of Neural Mechanisms of Attention in Solving the Binding Problem , 1999, Neuron.

[17]  Néstor Parga,et al.  Backward Projections in the Cerebral Cortex: Implications for Memory Storage , 1999, Neural Computation.

[18]  N Parga,et al.  Associative memory properties of multiple cortical modules. , 1999, Network.

[19]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[20]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[21]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[22]  L. Abbott,et al.  Invariant visual responses from attentional gain fields. , 1997, Journal of neurophysiology.

[23]  J. Duncan,et al.  Competitive brain activity in visual attention , 1997, Current Opinion in Neurobiology.

[24]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[25]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  E. Niebur,et al.  Modeling the Temporal Dynamics of IT Neurons in Visual Search: A Mechanism for Top-Down Selective Attention , 1996, Journal of Cognitive Neuroscience.

[27]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[28]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  M. Tovée,et al.  Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. , 1994, Journal of neurophysiology.

[30]  M. Tovée,et al.  Processing speed in the cerebral cortex and the neurophysiology of visual masking , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  B. Motter Neural correlates of attentive selection for color or luminance in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  B. C. Motter,et al.  Neural correlates of feature selective memory and pop-out in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[35]  E. Miller,et al.  Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus , 1993, Brain Research.

[36]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[37]  E T Rolls,et al.  Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  P. Fldik,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Computation.

[39]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[40]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[41]  H. Spitzer,et al.  Increased attention enhances both behavioral and neuronal performance. , 1988, Science.

[42]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[43]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  R. Weale Analysis of Visual Behaviour , 1983 .

[46]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[47]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[48]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[49]  J. Duncan The locus of interference in the perception of simultaneous stimuli. , 1980, Psychological review.

[50]  M. Tovée,et al.  The responses of single neurons in the temporal visual cortical areas of the macaque when more than one stimulus is present in the receptive field , 2004, Experimental Brain Research.

[51]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[52]  Edmund T. Rolls,et al.  Invariant recognition of feature combinations in the visual system , 2002, Biological Cybernetics.

[53]  Gustavo Deco,et al.  Biased Competition Mechanisms for Visual Attention in a Multimodular Neurodynamical System , 2001, Emergent Neural Computational Architectures Based on Neuroscience.

[54]  Stefan Wermter,et al.  Emergent Neural Computational Architectures Based on Neuroscience , 2001, Lecture Notes in Computer Science.

[55]  Wulfram Gerstner,et al.  Population Dynamics of Spiking Neurons: Fast Transients, Asynchronous States, and Locking , 2000, Neural Computation.

[56]  L. Chelazzi Serial attention mechanisms in visual search: A critical look at the evidence , 1999, Psychological research.

[57]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[58]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[59]  J. Duncan Cooperating brain systems in selective perception and action. , 1996 .

[60]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[61]  G. Wallis,et al.  Learning invariant responses to the natural transformations of objects , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[62]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[63]  Daniel J. Amit,et al.  Quantitative Study of Attractor Neural Network Retrieving at Low Spike Rates: I , 1991 .

[64]  F. AbbottPhysics Realistic Synaptic Inputs for Model Neural Networks , 1991 .

[65]  D. Amit,et al.  Quantitative study of attractor neural networks retrieving at low spike rates: II. Low-rate retrieval in symmetric networks , 1991 .

[66]  L. F. Abbott,et al.  Realistic synaptic inputs for model neural networks , 1991 .

[67]  D. C. Essen,et al.  Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey. , 1990, Cold Spring Harbor symposia on quantitative biology.

[68]  R. Desimone,et al.  Inferior Temporal Cortex and Pattern Recognition , 1985 .

[69]  E. Rolls Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. , 1984, Human neurobiology.

[70]  Rolls Et Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. , 1984 .

[71]  G. Westheimer Spatial vision. , 1984, Annual review of psychology.

[72]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[73]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[74]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[75]  Vision Research , 1961, Nature.