Structure and function of evolved neuro-controllers for autonomous robots

The artificial life approach to evolutionary robotics is used as a fundamental framework for the development of a modular neural control of autonomous mobile robots. The applied evolutionary technique is especially designed to grow different neural structures with complex dynamical properties. This is due to a modular neurodynamics approach to cognitive systems, stating that cognitive processes are the result of interacting dynamical neuro-modules. The evolutionary algorithm is described, and a few examples for the versatility of the procedures are given. Besides solutions for standard tasks like exploration, obstacle avoidance and tropism, also the sequential evolution of morphology and control of a biped is demonstrated. A further example describes the co-evolution of different neuro-controllers co-operating to keep a gravitationally driven art-robot in constant rotation.

[1]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[2]  W. Ashby Design for a Brain , 1954 .

[3]  R. F. Tredgold,et al.  The Living Brain , 1954, Mental Health.

[4]  Norbert Wiener,et al.  Cybernetics, Second Edition: or the Control and Communication in the Animal and the Machine , 1965 .

[5]  J. Winn,et al.  Brain , 1878, The Lancet.

[6]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .

[7]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[8]  Francesco Mondada,et al.  Mobile Robot Miniaturisation: A Tool for Investigation in Control Algorithms , 1993, ISER.

[9]  O. Gingerich A mind in motion , 1994, Nature.

[10]  Randall D. Beer,et al.  A Dynamical Systems Perspective on Agent-Environment Interaction , 1995, Artif. Intell..

[11]  Michael A. Arbib,et al.  Sensorimotor Transformations in the Worlds of Frogs and Robots , 1995, Artif. Intell..

[12]  Inman Harvey,et al.  Circle in the round: State space attractors for evolved sighted robots , 1995, Robotics Auton. Syst..

[13]  L. Peikoff We the living , 1996 .

[14]  Stanley J. Rosenschein,et al.  A dynamical systems perspective on agent-environment interaction , 1996 .

[15]  U. Dieckmann The Dynamical Theory of Coevolution , 1996 .

[16]  Gavan Lintern,et al.  Dynamic patterns: The self-organization of brain and behavior , 1997, Complex.

[17]  M. Arbib,et al.  Neural Organization: Structure, Function, and Dynamics , 1997 .

[18]  G. Ermentrout Dynamic patterns: The self-organization of brain and behavior , 1997 .

[19]  F. Pasemann A simple chaotic neuron , 1997 .

[20]  Rolf Pfeifer,et al.  Understanding intelligence , 2020, Inequality by Design.

[21]  D. Floreano,et al.  Evolutionary Robotics: The Biology,Intelligence,and Technology , 2000 .

[22]  Chandana Paul,et al.  Making Evolution an Offer It Can't Refuse: Morphology and the Extradimensional Bypass , 2001, ECAL.

[23]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[24]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[25]  Martijn Wisse,et al.  A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees , 2001, Int. J. Robotics Res..

[26]  Bruno Lara,et al.  Robot control and the evolution of modular neurodynamics , 2001, Theory in Biosciences.

[27]  Bruno Lara,et al.  Robot control and the evolution of modular neurodynamics , 2001 .

[28]  F. Pasemann Complex dynamics and the structure of small neural networks , 2002, Network.

[29]  Frank Pasemann,et al.  Dynamical Neural Schmitt Trigger for Robot Control , 2002, ICANN.

[30]  E. Ruppin Evolutionary autonomous agents: A neuroscience perspective , 2002, Nature Reviews Neuroscience.

[31]  Frank Pasemann,et al.  Representing Robot-Environment Interactions by Dynamical Features of Neur-controllers , 2003, ABiALS.

[32]  Frank Pasemann,et al.  SO(2)-Networks as Neural Oscillators , 2003, IWANN.

[33]  Isaac Meilijson,et al.  Localization of Function via Lesion Analysis , 2003, Neural Computation.

[34]  F. Pasemann,et al.  A Modular Approach to Construction and Control of Walking Robots , 2004 .

[35]  P. Manoonpong Neural Processing of Auditory-tactile Sensor Data to Perform Reactive Behavior of Walking Machines , 2004 .

[36]  Frank Pasemann,et al.  From Passive to Active Dynamic 3D Bipedal Walking — An Evolutionary Approach , 2004 .

[37]  F. Pasemann,et al.  Expansion of Neuro-Modules by Structure Evolution , 2005 .

[38]  Richard K. Belew,et al.  Evolving robot morphology and control , 2006, Artificial Life and Robotics.