Velocity field control of robot manipulators by using only position measurements

In the velocity field control approach the robot motions are specified through a vectorial function that assigns the desired velocity to each point of the configuration space. In other words, a velocity field defines the robot desired velocity in the operational space as a function of its current position. In this paper is introduced a new algorithm to solve the velocity field control formulation in the robot operational space. The proposed approach assumes only joint position measurements and is based on a hierarchical structure that results of using the kinematic control concept and a joint velocity controller. To estimate the joint velocity, nonlinear filtering of the joint position is used.

[1]  Perry Y. Li,et al.  Passive velocity field control (PVFC). Part I. Geometry and robustness , 2001, IEEE Trans. Autom. Control..

[2]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[3]  Antonio Loría,et al.  Growth rate conditions for uniform asymptotic stability of cascaded time-varying systems , 2001, Autom..

[4]  Ronald C. Arkin,et al.  Intelligent Robotic Systems , 1995, IEEE Expert.

[5]  Perry Y. Li Coordinated contour following control for machining operations-a survey , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[6]  Javier Moreno,et al.  On Motor Velocity Control by Using Only Position Measurements: Two Case Studies , 2002 .

[7]  Javier Moreno-Valenzuela,et al.  A robust velocity field control , 2002, IEEE Trans. Control. Syst. Technol..

[8]  Rafael Kelly,et al.  Control of Robot Manipulators in Joint Space , 2005 .

[9]  J. Moreno–Valenzuela Design of output feedback tacking controllers for Euler-Lagrange systems by using a Lyapunov function-based procedure , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[10]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[11]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[12]  M.S. de Queiroz,et al.  On global output feedback tracking control of robot manipulators , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[13]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[14]  Larry Leifer,et al.  Applications of Damped Least-Squares Methods to Resolved-Rate and Resolved-Acceleration Control of Manipulators , 1988 .

[15]  Mark W. Spong,et al.  An experimental comparison of robust control algorithms on a direct drive manipulator , 1996, IEEE Trans. Control. Syst. Technol..

[16]  E. Panteley,et al.  On global uniform asymptotic stability of nonlinear time-varying systems in cascade , 1998 .

[17]  Klas Nilsson,et al.  Industrial Robot Programming , 1996 .

[18]  R. Kelly A Simple Set-point Robot Controller by Using Only Position Measurements* , 1993 .

[19]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[20]  Rafael Kelly,et al.  A Hierarchical Approach to Manipulator Velocity Field Control Considering Dynamic Friction Compensation , 2006 .

[21]  Bruno Siciliano,et al.  Kinematic control of redundant robot manipulators: A tutorial , 1990, J. Intell. Robotic Syst..

[22]  Javier Moreno,et al.  ON MANIPULATOR CONTROL VIA VELOCITY FIELDS , 2002 .

[23]  Javier Moreno-Valenzuela,et al.  Hierarchical velocity field control for robot manipulators , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[24]  Javier Moreno-Valenzuela,et al.  Manipulator motion control in operational space using joint velocity inner loops , 2005, Autom..

[25]  Warren E. Dixon,et al.  Global robust output feedback tracking control of robot manipulators , 2004, Robotica.

[26]  Perry Y. Li,et al.  Passive velocity field control of mechanical manipulators , 1995, IEEE Trans. Robotics Autom..