Safe Robot Navigation in Cluttered Environments using Invariant Ellipsoids and a Reference Governor

This paper considers the problem of safe autonomous navigation in unknown environments, relying on local obstacle sensing. We consider a control-affine nonlinear robot system subject to bounded input noise and rely on feedback linearization to determine ellipsoid output bounds on the closed-loop robot trajectory under stabilizing control. A virtual governor system is developed to adaptively track a desired navigation path, while relying on the robot trajectory bounds to slow down if safety is endangered and speed up otherwise. The main contribution is the derivation of theoretical guarantees for safe nonlinear system path-following control and its application to autonomous robot navigation in unknown environments.

[1]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[2]  Vijay Kumar,et al.  Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load , 2013, 52nd IEEE Conference on Decision and Control.

[3]  R. Murray,et al.  Differential Flatness of Mechanical Control Systems: A Catalog of Prototype Systems , 1995 .

[4]  Daniel E. Koditschek,et al.  Sequential Composition of Dynamically Dexterous Robot Behaviors , 1999, Int. J. Robotics Res..

[5]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[6]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[7]  Jaume Franch,et al.  Control and trajectory generation of an Ackerman vehicle by dynamic linearization , 2009, 2009 European Control Conference (ECC).

[8]  J. Calvet,et al.  Feedforward and feedback linearization of non-linear systems with disturbances , 1988 .

[9]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[10]  Daniel E. Koditschek,et al.  Smooth extensions of feedback motion planners via reference governors , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Giuseppe Oriolo,et al.  Feedback control of a nonholonomic car-like robot , 1998 .

[12]  Francesco Borrelli,et al.  Sample-Based Learning Model Predictive Control for Linear Uncertain Systems , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[13]  Guofan Wu,et al.  Safety-critical control of a planar quadrotor , 2016, 2016 American Control Conference (ACC).

[14]  Kostas E. Bekris,et al.  Asymptotically optimal sampling-based kinodynamic planning , 2014, Int. J. Robotics Res..

[15]  K. Poolla,et al.  A linear matrix inequality approach to peak‐to‐peak gain minimization , 1996 .

[16]  Guofan Wu,et al.  Safety-critical and constrained geometric control synthesis using control Lyapunov and control Barrier functions for systems evolving on manifolds , 2015, 2015 American Control Conference (ACC).

[17]  Ian R. Manchester,et al.  LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification , 2010, Int. J. Robotics Res..

[18]  Marco Pavone,et al.  Robust online motion planning via contraction theory and convex optimization , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Jürgen Ackermann,et al.  Robust yaw damping of cars with front and rear wheel steering , 1993, IEEE Trans. Control. Syst. Technol..

[20]  Siddhartha S. Srinivasa,et al.  Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search , 2017, Int. J. Robotics Res..

[21]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[22]  Vijay Kumar,et al.  Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments , 2017, IEEE Robotics and Automation Letters.

[23]  S. Gruber,et al.  Robot hands and the mechanics of manipulation , 1987, Proceedings of the IEEE.

[24]  Russ Tedrake,et al.  Funnel libraries for real-time robust feedback motion planning , 2016, Int. J. Robotics Res..

[25]  M. Corless,et al.  Quadratic boundedness of nominally linear systems , 1998 .

[26]  Maciej Michalek,et al.  Algorithmization of Constrained Motion for Car-Like Robots Using the VFO Control Strategy with Parallelized Planning of Admissible Funnels , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[27]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[28]  Maciej Michalek,et al.  VFO feedback control using positively-invariant funnels for mobile robots travelling in polygonal worlds with bounded curvature of motion , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[29]  Emanuele Garone,et al.  Explicit Reference Governor for Constrained Nonlinear Systems , 2016, IEEE Transactions on Automatic Control.

[30]  Jur P. van den Berg,et al.  Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics , 2013, 2013 IEEE International Conference on Robotics and Automation.

[31]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[32]  Paulo Tabuada,et al.  Control Barrier Function Based Quadratic Programs for Safety Critical Systems , 2016, IEEE Transactions on Automatic Control.

[33]  Yi Lin,et al.  Online Safe Trajectory Generation for Quadrotors Using Fast Marching Method and Bernstein Basis Polynomial , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Koushil Sreenath,et al.  Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics , 2014, IEEE Transactions on Automatic Control.

[35]  P. Olver Nonlinear Systems , 2013 .

[36]  Andrew Packard,et al.  Stability Region Analysis Using Polynomial and Composite Polynomial Lyapunov Functions and Sum-of-Squares Programming , 2008, IEEE Transactions on Automatic Control.

[37]  Maxim Likhachev,et al.  Multi-Heuristic A* , 2014, Int. J. Robotics Res..

[38]  Mo Chen,et al.  FaSTrack: A modular framework for fast and guaranteed safe motion planning , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[39]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[40]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[41]  Paulo Tabuada,et al.  Control Barrier Functions: Theory and Applications , 2019, 2019 18th European Control Conference (ECC).

[42]  Stefano Di Cairano,et al.  Reference and command governors: A tutorial on their theory and automotive applications , 2014, 2014 American Control Conference.

[43]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.