Soldier-in-the-Loop Target Acquisition Performance Prediction Through 2001: Integration of Perceptual and Cognitive Models

Abstract : Modeling Soldier-in-the-loop target acquisition performance is necessary for the development of improved sensors, more effective training methods, and better war game simulations. Accurately modeling requires a detailed understanding of how the observer employs sensor information to acquire a target. This report takes a two-pronged approach to how future models can be improved by the sensible integration of human visual processing. One prong concerns basic research from the perceptual psychology community. Over the last few decades, this research has generated a detailed theoretical understanding of visual processing and decision making, based on visual information. The other prong concerns important models, modeling frameworks, and scene metrics from the military target acquisition community. Particular attention is paid to issues of clutter, the extendibility of the Johnson criteria, classical and neoclassical search frameworks, the selection of methods and performance metrics, and existing Night Vision and Electronic Sensors Directorate models. Phenomena from perceptual psychology known to affect target acquisition are reviewed in terms of how target acquisition models do and do not account for them. Basic models of visual search are included as guides for how target acquisition models may incorporate some of these factors. Visual selective attention is recommended as a means for the theoretically meaningful inclusion of psychologically important factors into target acquisition modeling.

[1]  Dan E. Dudgeon,et al.  ATR Performance Modeling and Estimation , 2000, Digit. Signal Process..

[2]  Darryl Bryk,et al.  Computing the probability of target detection in dynamic visual scenes containing clutter using fuzzy logic approach , 1998 .

[3]  Jeremy M. Wolfe,et al.  Just Say No: How Are Visual Searches Terminated When There Is No Target Present? , 1996, Cognitive Psychology.

[4]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[5]  Stanley R. Rotman,et al.  Modeling Human Search And Target Acquisition Performance: I. First Detection Probability In A Realistic Multitarget Scenario , 1989 .

[6]  A. Toet Target Acquisition in Complex Scenes, Part A: Search and Conspicuity Models. , 1996 .

[7]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[8]  Ronald A. Rensink,et al.  Change-blindness as a result of ‘mudsplashes’ , 1999, Nature.

[9]  S. Yantis,et al.  Visual motion and attentional capture , 1994, Perception & psychophysics.

[10]  Irving Biederman,et al.  An Account of Object Identification Confusions , 1997 .

[11]  J. Wolfe Visual search in continuous, naturalistic stimuli , 1994, Vision Research.

[12]  Ronald A. Rensink The Attentional Capacity of Visual Search under Flicker Conditions , 1996 .

[13]  Elizabeth S. Olds,et al.  Spatial Organization of Distractors in Visual Search , 1999 .

[14]  Melvin Freitag,et al.  Air-to-Ground Target Acquisition Source Book: A Review of the Literature , 1974 .

[15]  H. C. Nothdurft,et al.  Texture segmentation and pop-out from orientation contrast , 1991, Vision Research.

[16]  W. D. Ross,et al.  A Neural Theory of Attentive Visual Search : Interactions of Boundary , Surface , Spatial , and Object Representations By : Stephen Grossberg , 2004 .

[17]  M. Tarr,et al.  Testing conditions for viewpoint invariance in object recognition. , 1997, Journal of experimental psychology. Human perception and performance.

[18]  Stanley R. Rotman,et al.  Target acquisition and false alarms in clutter , 1995 .

[19]  Stanley R. Rotman,et al.  Textural metrics for clutter affecting human target acquisition , 1996, Defense, Security, and Sensing.

[20]  J. Wolfe,et al.  What Can 1 Million Trials Tell Us About Visual Search? , 1998 .

[21]  Alan H. Blumenthal,et al.  An Improved Electro-Optical Image Quality Summary Measure , 1981, Optics & Photonics.

[22]  H. E. Petersen,et al.  The Relative Importance of Contrast and Motion in Visual Detection , 1972, Human factors.

[23]  Piet Bijl,et al.  Triangle orientation discrimination: the alternative to minimum resolvable temperature difference and minimum resolvable contrast , 1998 .

[24]  J. Wolfe,et al.  Preattentive Object Files: Shapeless Bundles of Basic Features , 1997, Vision Research.

[25]  M. Farah,et al.  Does visual attention select objects or locations? , 1994, Journal of experimental psychology. General.

[26]  Norman Barsalou,et al.  APPLYING HUMAN SPATIAL VISION MODELS TO REAL-WORLD TARGET DETECTION AND IDENTIFICATION: A TEST OF THE WILSON MODEL , 1995 .

[27]  Alexander Toet,et al.  Image dataset for testing search and detection models , 2001 .

[28]  Stanley R. Rotman Modeling Human Search And Target Acquisition Performance: II. Simulating Multiple Observers In Dynamic Scenarios , 1989 .

[29]  Robert W. Kentridge,et al.  Eye movement research : mechanisms, processes and applications , 1995 .

[30]  J. Wolfe,et al.  A Model of Visual Search Catches Up With Jay Enoch 40 Years Later , 1999 .

[31]  Regina W. Kistner,et al.  Detection of Low-Contrast Moving Targets , 2000 .

[32]  I. staff Front end , 2002 .

[33]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[34]  H. Egeth,et al.  Searching for conjunctively defined targets. , 1984, Journal of experimental psychology. Human perception and performance.

[35]  Kevin J. Cooke,et al.  THE ORACLE APPROACH TO TARGET ACQUISITION AND SEARCH MODELLING , 1995 .

[36]  Lynn A. Olzak,et al.  Cue summation in spatial discriminations , 1990, Vision Research.

[37]  Gil Tidhar,et al.  Modeling human search and target acquisition performance: IV. detection probability in the cluttered environment , 1994 .

[38]  A. M. Rohaly,et al.  Object detection in natural backgrounds predicted by discrimination performance and models , 1997, Vision Research.

[39]  Mohan M. Trivedi,et al.  Texture perception in humans and computers: models and psychophysical experiments , 1996, Defense, Security, and Sensing.

[40]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[41]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[42]  Robert M. McPeek,et al.  Saccades require focal attention and are facilitated by a short-term memory system , 1999, Vision Research.

[43]  Juan Lupiáñez,et al.  Automatic and controlled processing in stroop negative priming : The role of attentional set , 1999 .

[44]  Theo J. Doll,et al.  Target detection in urban clutter , 1989, IEEE Trans. Syst. Man Cybern..

[45]  Lawrence W. Stark,et al.  Visual perception and sequences of eye movement fixations: a stochastic modeling approach , 1992, IEEE Trans. Syst. Man Cybern..

[46]  Anthony A. Wasilewski,et al.  Robust, sensor-independent target detection and recognition based on computational models of human vision , 1998 .

[47]  R. Watt,et al.  A theory of the primitive spatial code in human vision , 1985, Vision Research.

[48]  Yehezkel Yeshurun,et al.  Context-free attentional operators: The generalized symmetry transform , 1995, International Journal of Computer Vision.

[49]  Richard Hecker Camaeleon--camouflage assessment by evaluation of local energy, spatialfrequency, and orientation , 1992, Defense, Security, and Sensing.

[50]  D. Pelli,et al.  The scale bandwidth of visual search , 1994, Vision Research.

[51]  Gil Tidhar,et al.  Clutter metrics for target detection systems , 1994 .

[52]  James D. Silk Modeling the observer in target acquisition , 1996, Defense, Security, and Sensing.

[53]  G. McConkie,et al.  Eye movements and integrating information across fixations. , 1978, Journal of experimental psychology. Human perception and performance.

[54]  G. Logan,et al.  Converging operations in the study of visual selective attention , 1996 .

[55]  H. Deubel,et al.  Visual attention and saccadic eye movements: Evidence for obligatory and selective spatial coupling , 1995 .

[56]  H. Intraub Rapid conceptual identification of sequentially presented pictures. , 1981 .

[57]  A H. Blumenthal,et al.  Development Of An Image Quality Model For Object Discrimination , 1984, Other Conferences.

[58]  J. Theeuwes,et al.  Attentional control during visual search: the effect of irrelevant singletons. , 1998, Journal of experimental psychology. Human perception and performance.

[59]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  D. Tolhurst,et al.  Interactions between spatial frequency channels , 1978, Vision Research.

[61]  Barbara L. O'kane VALIDATION OF PREDICTION MODELS FOR TARGET ACQUISITION WITH ELECTRO-OPTICAL SENSORS , 1995 .

[62]  J. Theeuwes Abrupt luminance change pops out; abrupt color change does not , 1995, Perception & psychophysics.

[63]  Michael J. Tarr Is human object recognition better described by geon structural description or by multiple views , 1995 .

[64]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[65]  Andrew B. Watson,et al.  The cortex transform: rapid computation of simulated neural images , 1987 .

[66]  M. Minsky The Society of Mind , 1986 .

[67]  I. Rock,et al.  Inattentional blindness: Perception without attention. , 1998 .

[68]  K. Turano,et al.  Oculomotor strategies for the direction of gaze tested with a real-world activity , 2003, Vision Research.

[69]  Olav Lillesaeter,et al.  Complex contrast, a definition for structured targets and backgrounds , 1993 .

[70]  A. Treisman,et al.  Conjunction search revisited. , 1990, Journal of experimental psychology. Human perception and performance.

[71]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[72]  L G Williams,et al.  Target Conspicuity and Visual Search1 , 1966, Human factors.

[73]  P. Verghese,et al.  Combining speed information across space , 1995, Vision Research.

[74]  Theodore J. Doll,et al.  Observer false alarm effects on detection in clutter , 1993 .

[75]  Jacob Nachmias,et al.  On the psychometric function for contrast detection , 1981, Vision Research.

[76]  John Palmer,et al.  Imperfect, Unlimited-Capacity, Parallel Search Yields Large Set-Size Effects , 1995 .

[77]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[78]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[79]  V. S. RAMACHANDRAN,et al.  Does colour provide an input to human motion perception? , 1978, Nature.

[80]  Gilbert G. Kuperman,et al.  Effects of Scene Modulation Image Blur and Noise Upon Human Target Acquisition Performance. , 1997 .

[81]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[82]  David H. Hsu,et al.  A Search for Understanding. Analysis of Human Performance on Target Acquisition and Search Tasks using Eyetracker Data. , 1995 .

[83]  I. Vol,et al.  Similarity between Fourier transforms of objects predicts their experimental confusions , 1990, Perception & psychophysics.

[84]  O. Braddick,et al.  The temporal integration and resolution of velocity signals , 1991, Vision Research.

[85]  L A Scanlan,et al.  A Behavioral Model of Target Acquisition in Realistic Terrain. , 1978 .

[86]  K K De Valois,et al.  The role of color in the motion system. , 1992, Vision research.

[87]  Lynn A. Olzak,et al.  Configural effects constrain fourier models of pattern discrimination , 1992, Vision Research.

[88]  Derrick J. Parkhurst,et al.  Modeling the role of salience in the allocation of overt visual attention , 2002, Vision Research.

[89]  B. Moulden,et al.  The Standard Deviation of Luminance as a Metric for Contrast in Random-Dot Images , 1990, Perception.

[90]  Mohan M. Trivedi,et al.  Signature strength metrics for camouflaged targets corresponding to human perceptual cues , 1998 .

[91]  M. Carrasco,et al.  The eccentricity effect: Target eccentricity affects performance on conjunction searches , 1995, Perception & psychophysics.

[92]  Walter R. Lawson,et al.  Night Vision Laboratory Static Performance Model for Thermal Viewing Systems , 1975 .

[93]  K. Nakayama,et al.  Sustained and transient components of focal visual attention , 1989, Vision Research.

[94]  James D. Silk Statistical and Modeling Uncertainties in the Thermal Target Acquisition Model Improvement Program (TAMIP) Predictions. , 1995 .

[95]  Harpreet Singh,et al.  Predicting the probability of target detection in static infrared and visual scenes using the fuzzy logic approach , 1998 .

[96]  Charles P. Greening,et al.  Mathematical Modeling of Air-to-Ground Target Acquisition , 1976 .

[97]  Robert Karsh,et al.  Target Acquisition in Cluttered Environments , 1992 .

[98]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[99]  H. Egeth,et al.  Overriding stimulus-driven attentional capture , 1994, Perception & psychophysics.

[100]  Charles P. Greening Alternative Approaches to Modeling Visual Target Acquisition , 1974 .

[101]  D. Hubel Eye, brain, and vision , 1988 .

[102]  R. M. Boynton,et al.  Visibility of borders: separate and combined effects of color differences, luminance contrast, and luminance level. , 1981, Journal of the Optical Society of America.

[103]  Marshall Weathersby,et al.  Detection Performance in Clutter with Variable Resolution , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[104]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[105]  James D. Silk A Model of False Alarms in Target Acquisition by Human Observers. , 1995 .

[106]  J. Howard Johnson,et al.  Analysis of Image Forming Systems , 1985 .

[107]  S. Grossberg Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. , 1997 .

[108]  J G Rogers,et al.  Peripheral Contrast Thresholds for Moving Images , 1972, Human factors.

[109]  S. Yantis 2. Attentional capture in vision , 1996 .

[110]  Preeti Verghese,et al.  PII: S0042-6989(98)00033-9 , 1998 .

[111]  I. Biederman,et al.  Surface versus edge-based determinants of visual recognition , 1988, Cognitive Psychology.

[112]  A van Meeteren,et al.  Characterization of task performance with viewing instruments. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[113]  S. Yantis,et al.  Stimulus-driven attentional capture: evidence from equiluminant visual objects. , 1994, Journal of experimental psychology. Human perception and performance.

[114]  Glyn W. Humphreys,et al.  Segmentation on the basis of linear and local rotational motion : motion grouping in visual search , 1999 .

[115]  I. Overington Towards A Complete Model Of Photopic Visual Threshold Performance , 1982 .

[116]  J. Townsend Serial vs. Parallel Processing: Sometimes They Look like Tweedledum and Tweedledee but they can (and Should) be Distinguished , 1990 .

[117]  Howard E. Egeth,et al.  Redundancy gain revisited: Evidence for parallel processing of separable dimensions. , 1991 .

[118]  Todd S. Horowitz,et al.  Visual search has no memory , 1998, Nature.

[119]  E. William Yund,et al.  Spatial frequency and attention: Effects of level-, target-, and location-repetition on the processing of global and local forms , 1996, Perception & psychophysics.

[120]  E D Megaw,et al.  Eye Movements and Visual Search: A Bibliography, , 1983 .

[121]  Ronald A. Rensink,et al.  TO SEE OR NOT TO SEE: The Need for Attention to Perceive Changes in Scenes , 1997 .

[122]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[123]  William C. Schmidt,et al.  Artificial Looming Yields Improved Performance over Lateral Motion: Implications for Stereoscopic Display Techniques , 1997, Hum. Factors.

[124]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[125]  Anthony A. Wasilewski,et al.  SIMULATION OF SELECTIVE ATTENTION AND TRAINING EFFECTS IN VISUAL SEARCH AND DETECTION , 1995 .

[126]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[127]  Donald A. Norman,et al.  A non-parametric analysis of recognition experiments , 1964 .

[128]  Xosé R. Fernández-Vidal,et al.  A new image distortion measure based on a data-driven multisensor organization , 1998, Pattern Recognit..

[129]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[130]  Jon E. Skjervold Extensions of the U.S. Night Vision Laboratory static performance model for thermal viewing systems on structural targets and backgrounds in cluttered scenes , 1995, Defense, Security, and Sensing.

[131]  F. L. Engel Visual conspicuity, visual search and fixation tendencies of the eye , 1977, Vision Research.

[132]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[133]  Mohan M. Trivedi,et al.  Developing texture-based image clutter measures for object detection , 1992 .

[134]  J. M. Valeton,et al.  Target Acquisition: Human Observer Performance Studies and TARGAC Model Validation , 1994 .

[135]  Jeffrey F. Nicoll,et al.  Target attractiveness model for field-of-view search , 1998 .

[136]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[137]  Judith H. Lind Searching and Scanning: A Review of Lawrence W. Stark's Vision Models. , 1995 .

[138]  J. O'Regan,et al.  Solving the "real" mysteries of visual perception: the world as an outside memory. , 1992, Canadian journal of psychology.

[139]  Glyn W. Humphreys,et al.  SEarch via recursive rejection (SERR) , 1998 .

[140]  Stuart Anstis,et al.  The contribution of color to motion in normal and color-deficient observers , 1991, Vision Research.

[141]  Jeremy M. Wolfe,et al.  Guided Search 3.0 , 1997 .

[142]  M K Kaiser,et al.  Rotational and translational components of motion parallax: observers' sensitivity and implications for three-dimensional computer graphics. , 1995, Journal of experimental psychology. Applied.

[143]  A van Meeteren,et al.  PHIND: an analytic model to predict target acquisition distance with image intensifiers. , 1991, Applied optics.

[144]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[145]  Piet Bijl,et al.  Validation of the new triangle orientation discrimination method and ACQUIRE model predictions using observer performance data for ship targets , 1998 .

[146]  Janet Duffin,et al.  A Search for Understanding , 2000 .

[147]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[148]  Albert J. Ahumada,et al.  Object detection in a noisy scene , 1996, Electronic Imaging.

[149]  Jeffrey Nicoll A Mathematical Framework for an Improved Search Model. , 1994 .

[150]  H. H. Bailey Target Detection Through Visual Recognition: A Quantitative Model , 1970 .

[151]  S. Yantis,et al.  On the distinction between visual salience and stimulus-driven attentional capture. , 1999, Journal of experimental psychology. Human perception and performance.

[152]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[153]  Ronald G. Driggers,et al.  Targeting and intelligence electro-optical recognition modeling: a juxtaposition of the probabilities of discrimination and the general image quality equation , 1998 .

[154]  S. Grossberg Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. , 1997, Psychological review.

[155]  S. Zeki A vision of the brain , 1993 .

[156]  J. Duncan Selective attention and the organization of visual information. , 1984, Journal of experimental psychology. General.

[157]  Stanley R. Rotman,et al.  Modeling human search and target acquisition performance: fixation-point analysis , 1994 .

[158]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[159]  Mohan M. Trivedi,et al.  Evaluation of image metrics for target discrimination using psychophysical experiments , 1996 .

[160]  F. Kingdom,et al.  A multi-channel approach to brightness coding , 1992, Vision Research.

[161]  Alexander Toet,et al.  COMPUTATIONAL VISUAL DISTINCTNESS METRIC , 1998 .