Fully Inverse Parametric Linear/Quadratic Programming Problems via Convex Liftings

In this chapter, we present in an unified manner the latest developments on inverse optimality problem for continuous piecewise affine (PWA) functions. A particular attention is given to convex liftings as a cornerstone for the constructive solution we advocate in this framework. Subsequently, an algorithm based on convex lifting is presented for recovering a continuous PWA function defined over a polyhedral partition of a polyhedron. We also prove that any continuous PWA function can be equivalently obtained by a parametric linear programming problem with at most one auxiliary one-dimensional variable.

[1]  Efstratios N. Pistikopoulos,et al.  Multi-Parametric Programming: Volume 1: Theory, Algorithms, and Applications , 2007 .

[2]  Ion Necoara,et al.  Inverse Parametric Convex Programming Problems Via Convex Liftings , 2014 .

[3]  Sorin Olaru,et al.  Recognition of additively weighted Voronoi diagrams and weighted Delaunay decompositions , 2015, 2015 European Control Conference (ECC).

[4]  Graham C. Goodwin,et al.  Characterisation Of Receding Horizon Control For Constrained Linear Systems , 2003 .

[5]  Didier Dumur,et al.  A parameterized polyhedra approach for explicit constrained predictive control , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[6]  J. Maxwell,et al.  XLV. On reciprocal figures and diagrams of forces , 1864 .

[7]  Sorin Olaru,et al.  On the complexity of the convex liftings-based solution to inverse parametric convex programming problems , 2015, 2015 European Control Conference (ECC).

[8]  Tor Arne Johansen,et al.  Continuous Selection and Unique Polyhedral Representation of Solutions to Convex Parametric Quadratic Programs , 2007 .

[9]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[10]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[11]  Alberto Bemporad,et al.  An Algorithm for Approximate Multiparametric Convex Programming , 2006, Comput. Optim. Appl..

[12]  Franz Aurenhammer,et al.  Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra , 1987, J. Symb. Comput..

[13]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[14]  John Lygeros,et al.  Inverse Parametric Optimization With an Application to Hybrid System Control , 2015, IEEE Transactions on Automatic Control.

[15]  Colin Neil Jones,et al.  On the facet-to-facet property of solutions to convex parametric quadratic programs , 2006, Autom..

[16]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[17]  Sorin Olaru,et al.  Implications of Inverse Parametric Optimization in Model Predictive Control , 2015 .

[18]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[19]  David Hartvigsen,et al.  Recognizing Voronoi Diagrams with Linear Programming , 1992, INFORMS J. Comput..

[20]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[21]  Hoai-Nam Nguyen,et al.  Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems: An Interpolation-Based Approach , 2013 .

[22]  GZ Georgo Angelis,et al.  System analysis, modelling and control with polytopic linear models , 2001 .

[23]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[24]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1985, SCG '85.

[25]  Miroslav Fikar,et al.  Clipping-Based Complexity Reduction in Explicit MPC , 2012, IEEE Transactions on Automatic Control.

[26]  T. Johansen On multi-parametric nonlinear programming and explicit nonlinear model predictive control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[27]  Walter Whiteley,et al.  Plane Self Stresses and projected Polyhedra I: The Basic Pattem , 1993 .

[28]  Franz Aurenhammer,et al.  A criterion for the affine equivalence of cell complexes inRd and convex polyhedra inRd+1 , 1987, Discret. Comput. Geom..

[29]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[30]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[31]  Moritz Diehl,et al.  Every Continuous Nonlinear Control System Can be Obtained by Parametric Convex Programming , 2008, IEEE Transactions on Automatic Control.

[32]  Per-Olof Gutman,et al.  Explicit constraint control based on interpolation techniques for time-varying and uncertain linear discrete-time systems , 2011 .

[33]  Sorin Olaru,et al.  Any discontinuous PWA function is optimal solution to a parametric linear programming problem , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[34]  D. Dumur,et al.  On the continuity and complexity of control laws based on multiparametric linear programs , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[35]  Tor Arne Johansen,et al.  Explicit nonlinear model predictive control : theory and applications , 2012 .

[36]  Tor Arne Johansen,et al.  Approximate explicit receding horizon control of constrained nonlinear systems , 2004, Autom..

[37]  Ion Necoara,et al.  On the lifting problems and their connections with piecewise affine control law design , 2014, 2014 European Control Conference (ECC).

[38]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[39]  Carl W. Lee,et al.  P.L.-Spheres, convex polytopes, and stress , 1996, Discret. Comput. Geom..

[40]  Miroslav Fikar,et al.  Complexity reduction of explicit model predictive control via separation , 2013, Autom..