A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies

In this paper we introduce a new hierarchical model for the simultaneous detection of brain activation and estimation of the shape of the hemodynamic response in multi-subject fMRI studies. The proposed approach circumvents a major stumbling block in standard multi-subject fMRI data analysis, in that it both allows the shape of the hemodynamic response function to vary across region and subjects, while still providing a straightforward way to estimate population-level activation. An efficient estimation algorithm is presented, as is an inferential framework that allows for not only tests of activation, but also tests for deviations from some canonical shape. The model is validated through simulations and application to a multi-subject fMRI study of thermal pain.

[1]  Thomas E. Nichols,et al.  Simple group fMRI modeling and inference , 2009, NeuroImage.

[2]  J. -B. Poline,et al.  Estimating the Delay of the fMRI Response , 2002, NeuroImage.

[3]  K. Kiehl,et al.  An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia , 2001, Schizophrenia Research.

[4]  M. Lindquist The Statistical Analysis of fMRI Data. , 2008, 0906.3662.

[5]  V. D. Calhoun,et al.  fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms , 2004, NeuroImage.

[6]  Douglas C. Noll,et al.  Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies , 2005, NeuroImage.

[7]  M. Lindquist,et al.  Validity and power in hemodynamic response modeling: A comparison study and a new approach , 2007, Human brain mapping.

[8]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[9]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  Bertrand Thirion,et al.  A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI , 2008, NeuroImage.

[12]  Fan Li,et al.  A semi-parametric model of the hemodynamic response for multi-subject fMRI data , 2013, NeuroImage.

[13]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[14]  M. D’Esposito,et al.  The variability of human BOLD hemodynamic responses , 1998, NeuroImage.

[15]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[16]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[17]  Claudio Babiloni,et al.  Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study , 2003, NeuroImage.

[18]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[19]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[20]  Z. Šidák Rectangular Confidence Regions for the Means of Multivariate Normal Distributions , 1967 .

[21]  Lotfi Chaâri,et al.  Hemodynamic-Informed Parcellation of fMRI Data in a Joint Detection Estimation Framework , 2012, MICCAI.

[22]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[23]  Eric Zarahn,et al.  Using larger dimensional signal subspaces to increase sensitivity in fMRI time series analyses , 2002, Human brain mapping.

[24]  Martin A. Lindquist,et al.  Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling , 2009, NeuroImage.

[25]  R. Peyron,et al.  Functional imaging of brain responses to pain. A review and meta-analysis (2000) , 2000, Neurophysiologie Clinique/Clinical Neurophysiology.

[26]  J B Poline,et al.  Joint detection-estimation of brain activity in functional MRI: a Multichannel Deconvolution solution , 2005, IEEE Transactions on Signal Processing.

[27]  Mark W. Woolrich,et al.  Constrained linear basis sets for HRF modelling using Variational Bayes , 2004, NeuroImage.

[28]  Lotfi Chaâri,et al.  Fast Joint Detection-Estimation of Evoked Brain Activity in Event-Related fMRI Using a Variational Approach , 2013, IEEE Transactions on Medical Imaging.

[29]  Thomas E. Nichols,et al.  Handbook of Functional MRI Data Analysis: Index , 2011 .

[30]  Marco A. R. Ferreira,et al.  Bayesian hierarchical multi-subject multiscale analysis of functional MRI data , 2012, NeuroImage.

[31]  Christopher R. Genovese,et al.  A Bayesian Time-Course Model for Functional Magnetic Resonance Imaging Data , 2000 .

[32]  Y. Pawitan In all likelihood : statistical modelling and inference using likelihood , 2002 .

[33]  Dimitri Van De Ville,et al.  Total activation: fMRI deconvolution through spatio-temporal regularization , 2013, NeuroImage.

[34]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[35]  Thomas Vincent,et al.  Multi-session extension of the joint-detection framework in fMRI , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[36]  Naoki Miura,et al.  A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals , 2004, NeuroImage.

[37]  P. Ciuciu,et al.  Spatially adaptive mixture modeling for analysis of fMRI time series , 2009, NeuroImage.

[38]  Martin A Lindquist,et al.  Dissociable Influences of Opiates and Expectations on Pain , 2012, The Journal of Neuroscience.

[39]  Thomas Vincent,et al.  Group-level impacts of within- and between-subject hemodynamic variability in fMRI , 2013, NeuroImage.

[40]  Lars Kai Hansen,et al.  Modeling the hemodynamic response in fMRI using smooth FIR filters , 2000, IEEE Transactions on Medical Imaging.