Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges.

The rapidly expanding field of nonaqueous multivalent intercalation batteries offers a promising way to overcome safety, cost, and energy density limitations of state-of-the-art Li-ion battery technology. We present a critical and rigorous analysis of the increasing volume of multivalent battery research, focusing on a wide range of intercalation cathode materials and the mechanisms of multivalent ion insertion and migration within those frameworks. The present analysis covers a wide variety of material chemistries, including chalcogenides, oxides, and polyanions, highlighting merits and challenges of each class of materials as multivalent cathodes. The review underscores the overlap of experiments and theory, ranging from charting the design metrics useful for developing the next generation of MV-cathodes to targeted in-depth studies rationalizing complex experimental results. On the basis of our critical review of the literature, we provide suggestions for future multivalent cathode studies, including a strong emphasis on the unambiguous characterization of the intercalation mechanisms.

[1]  T. Arthur,et al.  Study of Electrochemical Phenomena Observed at the Mg Metal/Electrolyte Interface , 2017 .

[2]  Albert L. Lipson,et al.  A High Power Rechargeable Nonaqueous Multivalent Zn/V2O5 Battery , 2016 .

[3]  K. Persson,et al.  Concentration dependent electrochemical properties and structural analysis of a simple magnesium electrolyte: magnesium bis(trifluoromethane sulfonyl)imide in diglyme , 2016 .

[4]  J. Connell,et al.  Tuning the Reversibility of Mg Anodes via Controlled Surface Passivation by H2O/Cl– in Organic Electrolytes , 2016 .

[5]  L. Nazar,et al.  Impact of intermediate sites on bulk diffusion barriers: Mg intercalation in Mg2Mo3O8 , 2016, 1610.06152.

[6]  Anubhav Jain,et al.  Evaluation of sulfur spinel compounds for multivalent battery cathode applications , 2016 .

[7]  M. R. Palacín,et al.  A Joint Computational and Experimental Evaluation of CaMn2O4 Polymorphs as Cathode Materials for Ca Ion Batteries , 2016 .

[8]  G. Giffin Ionic liquid-based electrolytes for “beyond lithium” battery technologies , 2016 .

[9]  Linda F. Nazar,et al.  A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode , 2016, Nature Energy.

[10]  D. Aurbach,et al.  Unique Behavior of Dimethoxyethane (DME)/Mg(N(SO2CF3)2)2 Solutions , 2016 .

[11]  O. Løvvik,et al.  Comparing electrochemical perormance of transition metal silicate cathodes and chevrel phase Mo6S8 in the analogous rechargeable Mg-ion battery system , 2016 .

[12]  A. Manthiram,et al.  Performance Enhancement and Mechanistic Studies of Magnesium–Sulfur Cells with an Advanced Cathode Structure , 2016 .

[13]  J. Choi,et al.  On the Mechanism of Crystal Water Insertion during Anomalous Spinel-to-Birnessite Phase Transition , 2016 .

[14]  Y. Sakurai,et al.  Reversible Calcium Ion Batteries Using a Dehydrated Prussian Blue Analogue Cathode , 2016 .

[15]  M. R. Palacín,et al.  In quest of cathode materials for Ca ion batteries: the CaMO3 perovskites (M = Mo, Cr, Mn, Fe, Co, and Ni). , 2016, Physical chemistry chemical physics : PCCP.

[16]  C. Grey,et al.  Mg(PF6)2-Based Electrolyte Systems: Understanding Electrolyte-Electrode Interactions for the Development of Mg-Ion Batteries. , 2016, Journal of the American Chemical Society.

[17]  C. Ling,et al.  Unveil the Chemistry of Olivine FePO4 as Magnesium Battery Cathode. , 2016, ACS applied materials & interfaces.

[18]  Linda F. Nazar,et al.  A high capacity thiospinel cathode for Mg batteries , 2016 .

[19]  D. Prendergast,et al.  Revealing electronic structure changes in Chevrel phase cathodes upon Mg insertion using X-ray absorption spectroscopy. , 2016, Physical chemistry chemical physics : PCCP.

[20]  L. Nazar,et al.  Layered TiS2 Positive Electrode for Mg Batteries , 2016 .

[21]  Watchareeya Kaveevivitchai,et al.  High Capacity Rechargeable Magnesium-Ion Batteries Based on a Microporous Molybdenum–Vanadium Oxide Cathode , 2016 .

[22]  L. A. Baker,et al.  Role of Chloride for a Simple, Non-Grignard Mg Electrolyte in Ether-Based Solvents. , 2016, ACS applied materials & interfaces.

[23]  L. Nazar,et al.  Prussian Blue Mg-Li Hybrid Batteries. , 2016, Advanced science.

[24]  Yan Yao,et al.  Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing , 2016 .

[25]  C. Pérez-Vicente,et al.  Advancing towards a veritable calcium-ion battery: CaCo2O4 positive electrode material , 2016 .

[26]  Jun Liu,et al.  Highly Reversible Zinc-Ion Intercalation into Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-Ion Batteries. , 2016, ACS applied materials & interfaces.

[27]  L. Nazar,et al.  A conditioning-free magnesium chloride complex electrolyte for rechargeable magnesium batteries , 2016 .

[28]  T. Masese,et al.  Anti-site mixing governs the electrochemical performances of olivine-type MgMnSiO4 cathodes for rechargeable magnesium batteries. , 2016, Physical chemistry chemical physics : PCCP.

[29]  Sang Bok Lee,et al.  Mapping the Challenges of Magnesium Battery. , 2016, The journal of physical chemistry letters.

[30]  Tiffany L. Kinnibrugh,et al.  Structural Evolution of Reversible Mg Insertion into a Bilayer Structure of V2O5·nH2O Xerogel Material , 2016 .

[31]  Pengfei Yan,et al.  Reversible aqueous zinc/manganese oxide energy storage from conversion reactions , 2016, Nature Energy.

[32]  L. Nazar,et al.  Prussian Blue Mg—Li Hybrid Batteries , 2016, Advanced Science.

[33]  Youngjin Kim,et al.  Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries. , 2016, ACS applied materials & interfaces.

[34]  Gerbrand Ceder,et al.  Computational understanding of Li-ion batteries , 2016 .

[35]  W. Richards,et al.  Role of Structural H2O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V2O5. , 2016, Nano letters.

[36]  Seung‐Tae Hong,et al.  Electrochemical Zinc-Ion Intercalation Properties and Crystal Structures of ZnMo6S8 and Zn2Mo6S8 Chevrel Phases in Aqueous Electrolytes. , 2016, Inorganic chemistry.

[37]  K. Zaghib,et al.  Theoretical investigation of Chevrel phase materials for cathodes accommodating Ca2+ ions , 2016 .

[38]  Donald J. Siegel,et al.  Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries. , 2016, The journal of physical chemistry letters.

[39]  D. Prendergast,et al.  Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI)2 in Diglyme: Implications for Multivalent Electrolytes , 2016 .

[40]  M. R. Palacín,et al.  Towards a calcium-based rechargeable battery. , 2016, Nature materials.

[41]  G. Ceder,et al.  Energetics of MnO 2 polymorphs in density functional theory , 2016 .

[42]  M. Watanabe,et al.  Thermal and Electrochemical Stability of Tetraglyme–Magnesium Bis(trifluoromethanesulfonyl)amide Complex: Electric Field Effect of Divalent Cation on Solvate Stability , 2016 .

[43]  A. Gewirth,et al.  The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions. , 2016, Journal of the American Chemical Society.

[44]  Jared T. Incorvati,et al.  Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode , 2016 .

[45]  B. L. Mehdi,et al.  Investigation of the Mechanism of Mg Insertion in Birnessite in Nonaqueous and Aqueous Rechargeable Mg-Ion Batteries , 2016 .

[46]  D. Buttry,et al.  Designer Ionic Liquids for Reversible Electrochemical Deposition/Dissolution of Magnesium. , 2016, Journal of the American Chemical Society.

[47]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[48]  Albert L. Lipson,et al.  Practical stability limits of magnesium electrolytes , 2016 .

[49]  A. Marschilok,et al.  Communication—Sol-Gel Synthesized Magnesium Vanadium Oxide, MgxV2O5 · nH2O: The Role of Structural Mg2+ on Battery Performance , 2016 .

[50]  C. Ling,et al.  Status and challenge of Mg battery cathode , 2016 .

[51]  Kevin G. Gallagher,et al.  Optimizing areal capacities through understanding the limitations of lithium-ion electrodes , 2016 .

[52]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[53]  J. Cabana,et al.  Phase-Controlled Electrochemical Activity of Epitaxial Mg-Spinel Thin Films. , 2015, ACS applied materials & interfaces.

[54]  John T. Vaughey,et al.  Rechargeable Ca-Ion Batteries: A New Energy Storage System , 2015 .

[55]  Byung Gon Kim,et al.  Direct Observation of an Anomalous Spinel-to-Layered Phase Transition Mediated by Crystal Water Intercalation. , 2015, Angewandte Chemie.

[56]  T. Shiga,et al.  Insertion of Calcium Ion into Prussian Blue Analogue in Nonaqueous Solutions and Its Application to a Rechargeable Battery with Dual Carriers , 2015 .

[57]  G. F. Ortiz,et al.  Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn2O4 and lambda-MnO2 for both aqueous and non-aqueous magnesium-ion batteries , 2015 .

[58]  Kristin A. Persson,et al.  Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries , 2015, 1511.02504.

[59]  J. Gim,et al.  A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications , 2015 .

[60]  James C. Knight,et al.  Chemical extraction of Zn from ZnMn2O4-based spinels , 2015 .

[61]  Byungchan Han,et al.  Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte , 2015 .

[62]  James C. Knight,et al.  On the Utility of Spinel Oxide Hosts for Magnesium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[63]  Hyunchul Kim,et al.  Sodium intercalation chemistry in graphite , 2015 .

[64]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[65]  Eleanor I. Gillette,et al.  Enhancing the reversibility of Mg/S battery chemistry through Li(+) mediation. , 2015, Journal of the American Chemical Society.

[66]  B. Šljukić,et al.  THE INFLUENCE OF INTERCALATED IONS ON CYCLIC STABILITY OF V2O5/GRAPHITE COMPOSITE IN AQUEOUS ELECTROLYTIC SOLUTIONS: EXPERIMENTAL AND THEORETICAL APPROACH , 2015 .

[67]  M. Xiong,et al.  A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. , 2015, Chemical communications.

[68]  J. Muldoon,et al.  Confession of a Magnesium Battery. , 2015, The journal of physical chemistry letters.

[69]  Florian Thöle,et al.  Re-examining the Chevrel phase Mo6S8 cathode for Mg intercalation from an electronic structure perspective. , 2015, Physical chemistry chemical physics : PCCP.

[70]  D. Prendergast,et al.  Mg Desolvation and Intercalation Mechanism at the Mo6S8 Chevrel Phase Surface , 2015 .

[71]  S. Dacek,et al.  Explaining Performance-Limiting Mechanisms in Fluorophosphate Na-Ion Battery Cathodes through Inactive Transition-Metal Mixing and First-Principles Mobility Calculations , 2015 .

[72]  Anubhav Jain,et al.  Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures , 2015 .

[73]  J. Tarascon,et al.  Influence of relative humidity on the structure and electrochemical performance of sustainable LiFeSO4F electrodes for Li-ion batteries , 2015 .

[74]  C. Ling,et al.  How General is the Conversion Reaction in Mg Battery Cathode: A Case Study of the Magnesiation of α-MnO2 , 2015 .

[75]  H. Takagi,et al.  Rechargeable magnesium-ion battery based on a TiSe2-cathode with d-p orbital hybridized electronic structure , 2015, Scientific Reports.

[76]  Christopher S. Johnson,et al.  Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries. , 2015, ACS nano.

[77]  Kristin A. Persson,et al.  First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. , 2015, Chemical communications.

[78]  Linxiao Geng,et al.  Reversible Electrochemical Intercalation of Aluminum in Mo6S8 , 2015 .

[79]  Feng Wu,et al.  Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes. , 2015, ACS applied materials & interfaces.

[80]  C. Grey,et al.  Defect-Tolerant Diffusion Channels for Mg2+ Ions in Ribbon-Type Borates: Structural Insights into Potential Battery Cathodes MgVBO4 and MgxFe2–xB2O5 , 2015 .

[81]  Rana Mohtadi,et al.  An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries. , 2015, Angewandte Chemie.

[82]  T. Doi,et al.  Intercalation and Push‐Out Process with Spinel‐to‐Rocksalt Transition on Mg Insertion into Spinel Oxides in Magnesium Batteries , 2015, Advanced science.

[83]  Dennis Nordlund,et al.  Direct Observation of Reversible Magnesium Ion Intercalation into a Spinel Oxide Host , 2015, Advanced materials.

[84]  Yi Cui,et al.  Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials , 2015 .

[85]  Seok-Gwang Doo,et al.  The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. , 2015, Nano letters.

[86]  Boeun Lee,et al.  Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. , 2015, Chemical communications.

[87]  C. Ling,et al.  Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process , 2015 .

[88]  Joseph Paul Baboo,et al.  Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System , 2015 .

[89]  J. Goodenough,et al.  Theoretical Study of the Structural Evolution of a Na2FeMn(CN)6 Cathode upon Na Intercalation , 2015, Chemistry of Materials.

[90]  G. Ceder,et al.  The Intercalation Phase Diagram of Mg in V2O5 from First-Principles , 2015, 1505.07731.

[91]  Min‐Sik Park,et al.  Recent Advances in Rechargeable Magnesium Battery Technology: A Review of the Field’s Current Status and Prospects , 2015 .

[92]  A. Van der Ven,et al.  Mg intercalation in layered and spinel host crystal structures for Mg batteries. , 2015, Inorganic chemistry.

[93]  Rahul Malik,et al.  Understanding the Initial Stages of Reversible Mg Deposition and Stripping in Inorganic Nonaqueous Electrolytes , 2015, 1504.07409.

[94]  C. Rao,et al.  Essentials of Inorganic Materials Synthesis , 2015 .

[95]  Boucar Diouf,et al.  Potential of lithium-ion batteries in renewable energy , 2015 .

[96]  B. Nykvist,et al.  Rapidly falling costs of battery packs for electric vehicles , 2015 .

[97]  Min‐Sik Park,et al.  Role of Cu in Mo₆S₈ and Cu mixture cathodes for magnesium ion batteries. , 2015, ACS applied materials & interfaces.

[98]  Peter Lamp,et al.  Future generations of cathode materials: an automotive industry perspective , 2015 .

[99]  Matthew M. Huie,et al.  Cathode materials for magnesium and magnesium-ion based batteries , 2015 .

[100]  Yan Yao,et al.  Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. , 2015, Nano letters.

[101]  Nav Nidhi Rajput,et al.  The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics. , 2015, Journal of the American Chemical Society.

[102]  Eleanor I. Gillette,et al.  Activation of a MnO2 cathode by water-stimulated Mg(2+) insertion for a magnesium ion battery. , 2015, Physical chemistry chemical physics : PCCP.

[103]  M. Fichtner,et al.  Performance Improvement of Magnesium Sulfur Batteries with Modified Non‐Nucleophilic Electrolytes , 2015 .

[104]  F. La Mantia,et al.  An aqueous zinc-ion battery based on copper hexacyanoferrate. , 2015, ChemSusChem.

[105]  T. Masese,et al.  Vanadium phosphate as a promising high-voltage magnesium ion (de)-intercalation cathode host , 2015 .

[106]  G. Crabtree The joint center for energy storage research: A new paradigm for battery research and development , 2014, 1411.7042.

[107]  M. Mizumaki,et al.  EQCM Analysis of Redox Behavior of CuFe Prussian Blue Analog in Mg Battery Electrolytes , 2015 .

[108]  Claire Villevieille,et al.  Rechargeable Batteries: Grasping for the Limits of Chemistry , 2015 .

[109]  Yang-Kook Sun,et al.  Evaluation of (CF3SO2)2N− (TFSI) Based Electrolyte Solutions for Mg Batteries , 2015 .

[110]  J. Muldoon,et al.  Why Grignard’s Century Old Nobel Prize Should Spark Your Curiosity , 2015 .

[111]  Xufeng Zhou,et al.  Towards High‐Voltage Aqueous Metal‐Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System , 2015 .

[112]  James C. Knight,et al.  Delithiation Mechanisms in Acid of Spinel LiMn2-xMxO4 (M = Cr, Fe, Co, and Ni) Cathodes , 2015 .

[113]  Dongwook Han,et al.  High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries , 2015 .

[114]  Albert L. Lipson,et al.  Current Collector Corrosion in Ca-Ion Batteries , 2015 .

[115]  Jeremy Neubauer,et al.  Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles , 2014 .

[116]  Kevin G. Gallagher,et al.  Fraction of the theoretical specific energy achieved on pack level for hypothetical battery chemistries , 2014 .

[117]  Rahul Malik,et al.  Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations , 2014 .

[118]  E. C. Barile,et al.  Electrolytic Conditioning of a Magnesium Aluminum Chloride Complex for Reversible Magnesium Deposition , 2014 .

[119]  Junyang Li,et al.  Synthesis, crystal structure and electrochemical properties of LiFePO4F cathode material for Li-ion batteries , 2014 .

[120]  Ki Jae Kim,et al.  Copper incorporated CuxMo6S8 (x ≥ 1) Chevrel-phase cathode materials synthesized by chemical intercalation process for rechargeable magnesium batteries , 2014 .

[121]  M Stanley Whittingham,et al.  Ultimate limits to intercalation reactions for lithium batteries. , 2014, Chemical reviews.

[122]  J. Muldoon,et al.  Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. , 2014, Chemical reviews.

[123]  Zhiguo Wang,et al.  Lithium and sodium diffusion in solid electrolyte materials of AM 2 (PO 4 ) 3 ( A = Li, Na, M = Ti, Sn and Zr ) , 2014 .

[124]  G. Gao,et al.  Tavorite-FeSO4F as a potential cathode material for Mg ion batteries: a first principles calculation. , 2014, Physical chemistry chemical physics : PCCP.

[125]  A. Manivannan,et al.  Rechargeable Magnesium Battery: Current Status and Key Challenges for the Future , 2014 .

[126]  Nav Nidhi Rajput,et al.  Solvation structure and energetics of electrolytes for multivalent energy storage. , 2014, Physical chemistry chemical physics : PCCP.

[127]  S. Adnan,et al.  Characterization of Mg0.5Zr2(PO4)3 for potential use as electrolyte in solid state magnesium batteries , 2014 .

[128]  Yuyan Shao,et al.  Facile Synthesis of Chevrel Phase Nanocubes and Their Applications for Multivalent Energy Storage , 2014 .

[129]  J. Carrasco Role of van der Waals Forces in Thermodynamics and Kinetics of Layered Transition Metal Oxide Electrodes: Alkali and Alkaline-Earth Ion Insertion into V2O5 , 2014 .

[130]  C. Yoon,et al.  Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide , 2014, Scientific Reports.

[131]  Xiaodong Zhang,et al.  Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode. , 2014, Physical chemistry chemical physics : PCCP.

[132]  Muhammad Ramzan,et al.  Electronic structure and ionic diffusion of green battery cathode material : Mg2Mo6S8 , 2014 .

[133]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[134]  Takuya Mori,et al.  High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements , 2014, Scientific Reports.

[135]  T. Masese,et al.  MgFePO4F as a feasible cathode material for magnesium batteries , 2014 .

[136]  Neeraj Sharma,et al.  Li2MnSiO4 cathodes modified by phosphorous substitution and the structural consequences , 2014 .

[137]  Jinghua Guo,et al.  Understanding the electrochemical mechanism of K-αMnO2 for magnesium battery cathodes. , 2014, ACS applied materials & interfaces.

[138]  A. Gewirth,et al.  Investigating the Reversibility of in Situ Generated Magnesium Organohaloaluminates for Magnesium Deposition and Dissolution , 2014 .

[139]  Doron Aurbach,et al.  The challenge of developing rechargeable magnesium batteries , 2014 .

[140]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[141]  G. Gao,et al.  MgVPO4F as a one-dimensional Mg-ion conductor for Mg ion battery positive electrode: a first principles calculation , 2014 .

[142]  Rana Mohtadi,et al.  Boron Clusters as Highly Stable Magnesium-Battery Electrolytes , 2014, Angewandte Chemie.

[143]  Yuyan Shao,et al.  A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries , 2014 .

[144]  Guiling Wang,et al.  Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery , 2014 .

[145]  Doron Aurbach,et al.  Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. , 2014, Chemical communications.

[146]  Yi Cui,et al.  Full open-framework batteries for stationary energy storage , 2014, Nature Communications.

[147]  A. Marschilok,et al.  Sol Gel Based Synthesis and Electrochemistry of Magnesium Vanadium Oxide: A Promising Cathode Material for Secondary Magnesium Ion Batteries , 2014 .

[148]  Prashanth H. Jampani,et al.  A Convenient Approach to Mo6S8 Chevrel Phase Cathode for Rechargeable Magnesium Battery , 2014 .

[149]  B. Cho,et al.  Todorokite-type MnO2 as a zinc-ion intercalating material , 2013 .

[150]  Yuyan Shao,et al.  Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance , 2013, Scientific Reports.

[151]  M. Miyayama,et al.  Manganese oxide octahedral molecular sieves as insertion electrodes for rechargeable Mg batteries , 2013 .

[152]  Yi Cui,et al.  Highly reversible open framework nanoscale electrodes for divalent ion batteries. , 2013, Nano letters.

[153]  C. Ling,et al.  First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius , 2013 .

[154]  Bin Liu,et al.  Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. , 2013, ACS nano.

[155]  D. Aurbach,et al.  Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[156]  J. Muldoon,et al.  Corrosion of magnesium electrolytes: chlorides – the culprit , 2013 .

[157]  Fuminori Mizuno,et al.  Phase Stability of Post-spinel Compound AMn2O4 (A = Li, Na, or Mg) and Its Application as a Rechargeable Battery Cathode , 2013 .

[158]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[159]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[160]  Zhiguo Wang,et al.  Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: an ab initio study. , 2013, Physical chemistry chemical physics : PCCP.

[161]  F. Kang,et al.  Investigation on Zinc Ion Storage in Alpha Manganese Dioxide for Zinc Ion Battery by Electrochemical Impedance Spectrum , 2013 .

[162]  M. Miyayama,et al.  High capacity positive electrodes for secondary Mg-ion batteries , 2012 .

[163]  M. Miyayama,et al.  Synthesis and electrochemical behavior of hollandite MnO2/acetylene black composite cathode for secondary Mg-ion batteries , 2012 .

[164]  Fan Zhang,et al.  Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries , 2012 .

[165]  Carlos Segovia Fernández,et al.  Synthesis of amorphous acid iron phosphate nanoparticles , 2012, Journal of Nanoparticle Research.

[166]  Ruigang Zhang,et al.  α-MnO2 as a cathode material for rechargeable Mg batteries , 2012 .

[167]  Rana Mohtadi,et al.  Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery** , 2012, Angewandte Chemie.

[168]  Yuki Yamada,et al.  Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode , 2012 .

[169]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[170]  C. Ling,et al.  First-principles study of the magnesiation of olivines: redox reaction mechanism, electrochemical and thermodynamic properties , 2012 .

[171]  Jason Graetz,et al.  Degradation and (de)lithiation processes in the high capacity battery material LiFeBO3 , 2012 .

[172]  Jiulin Wang,et al.  Magnesium cobalt silicate materials for reversible magnesium ion storage , 2012 .

[173]  H. Takamura,et al.  Ionic Conductivity and Crystal Structure of TM-Doped Mg0.5Ti2(PO4)3 (TM = Fe, Mn, Co and Nb) , 2012 .

[174]  Allen G. Oliver,et al.  Electrolyte roadblocks to a magnesium rechargeable battery , 2012 .

[175]  Hui Xiong,et al.  Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. , 2012, ACS nano.

[176]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[177]  Jun Chen,et al.  First-Principles Study of Zigzag MoS2 Nanoribbon As a Promising Cathode Material for Rechargeable Mg Batteries , 2012 .

[178]  Jun Yang,et al.  Electrochemical performance of novel electrolyte solutions based on organoboron magnesium salts , 2012 .

[179]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[180]  Kevin G. Gallagher,et al.  Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. , 2011 .

[181]  Jiulin Wang,et al.  MWNT/C/Mg1.03Mn0.97SiO4 hierarchical nanostructure for superior reversible magnesium ion storage , 2011 .

[182]  J. Tarascon,et al.  A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. , 2011, Nature materials.

[183]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[184]  Chengdu Liang,et al.  Lithium–Sulfur Batteries , 2011 .

[185]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[186]  Anubhav Jain,et al.  Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing , 2011 .

[187]  Jiulin Wang,et al.  Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries , 2011 .

[188]  Allen G. Oliver,et al.  Structure and compatibility of a magnesium electrolyte with a sulphur cathode , 2011, Nature communications.

[189]  M. Minakshi Alkaline-Earth Oxide Modified MnO2 Cathode: Enhanced Performance in an Aqueous Rechargeable Battery , 2011 .

[190]  M. Minakshi,et al.  Characterization of alkaline-earth oxide additions to the MnO2 cathode in an aqueous secondary battery , 2011 .

[191]  Doron Aurbach,et al.  Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. , 2011, Journal of the American Chemical Society.

[192]  L. Nazar,et al.  Alkali-ion Conduction Paths in LiFeSO4F and NaFeSO4F Tavorite-Type Cathode Materials , 2011 .

[193]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[194]  Jiulin Wang,et al.  MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable magnesium batteries , 2011 .

[195]  Anubhav Jain,et al.  Synthesis and Electrochemical Properties of Monoclinic LiMnBO3 as a Li Intercalation Material , 2011 .

[196]  Jiulin Wang,et al.  Mesoporous Magnesium Manganese Silicate as a Cathode Material for Rechargeable Magnesium Batteries: Mesoporous Magnesium Manganese Silicate as a Cathode Material for Rechargeable Magnesium Batteries , 2011 .

[197]  N. Stein,et al.  Electrochemical determination of the diffusion coefficient of cations into Chevrel phase-based electrochemical transfer junction by potential step chronoamperometry and impedance spectroscopy , 2011 .

[198]  Kevin G. Gallagher,et al.  Simplified calculation of the area specific impedance for battery design , 2011 .

[199]  Hua Ma,et al.  Rechargeable Mg Batteries with Graphene‐like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode , 2011, Advanced materials.

[200]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[201]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[202]  Yukinori Koyama,et al.  Lithium Iron Borates as High‐Capacity Battery Electrodes , 2010, Advanced materials.

[203]  B. Xu,et al.  Factors affecting Li mobility in spinel LiMn2O4—A first-principles study by GGA and GGA+U methods , 2010 .

[204]  D. Aurbach,et al.  Chevrel Phases, MxMo6T8 (M = Metals, T = S, Se, Te) as a Structural Chameleon: Changes in the Rhombohedral Framework and Triclinic Distortion , 2010 .

[205]  Jiulin Wang,et al.  Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. , 2010, Chemical communications.

[206]  M. Mitrić,et al.  Electrochemical Behaviour of V_{2}O_{5} Xerogel and V_{2}O_{5} Xerogel/C Composite in an Aqueous LiNO_{3} and Mg(NO_{3})_{2} Solutions , 2010 .

[207]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[208]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[209]  D. Aurbach,et al.  Crystallography of Chevrel Phases, MMo6T8 (M: Cd, Na, Mn, and Zn, T: S, Se) and Their Cation Mobility. , 2009 .

[210]  Jun Chen,et al.  Magnesium microspheres and nanospheres: Morphology-controlled synthesis and application in Mg/MnO2 batteries , 2009 .

[211]  D. Aurbach,et al.  Crystallography of Chevrel phases, MMo6T8 (M = Cd, Na, Mn, and Zn, T = S, Se) and their cation mobility. , 2009, Inorganic chemistry.

[212]  Jiulin Wang,et al.  Electrochemical Intercalation of Mg2+ in Magnesium Manganese Silicate and Its Application as High-Energy Rechargeable Magnesium Battery Cathode , 2009 .

[213]  D. Aurbach,et al.  New Insight on the Unusually High Ionic Mobility in Chevrel Phases , 2009 .

[214]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[215]  D. Aurbach,et al.  A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries , 2009 .

[216]  N. Sinha,et al.  Electrochemical conversion of LiMn2O4 to MgMn2O4 in aqueous electrolytes , 2008 .

[217]  W. Fang,et al.  Fast and reversible surface redox reduction in V2O5 dispersed on CNx nanotubes. , 2008, Chemical communications.

[218]  Jiulin Wang,et al.  Sol–gel synthesis of Mg1.03Mn0.97SiO4 and its electrochemical intercalation behavior , 2008 .

[219]  Jiulin Wang,et al.  Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO4 , 2008 .

[220]  D. Aurbach,et al.  Progress in nonaqueous magnesium electrochemistry , 2007 .

[221]  A. Mitelman,et al.  Progress in Rechargeable Magnesium Battery Technology , 2007 .

[222]  D. Aurbach,et al.  New cathode materials for rechargeable Mg batteries: fast Mg ion transport and reversible copper extrusion in CuyMo6S8 compounds. , 2007, Chemical communications.

[223]  D. Aurbach,et al.  Structural Mechanism of the Phase Transitions in the Mg−Cu−Mo6S8 System Probed by ex Situ Synchrotron X-ray Diffraction , 2007 .

[224]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[225]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[226]  D. Aurbach,et al.  On the mechanism of triclinic distortion in Chevrel Phase as probed by in-situ neutron diffraction. , 2007, Inorganic chemistry.

[227]  J. Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[228]  D. Aurbach,et al.  Phase Diagram of Mg Insertion into Chevrel Phases, MgxMo6T8 (T = S, Se). 1. Crystal Structure of the Sulfides , 2006 .

[229]  T. Nagai,et al.  Spinel-to-CaFe2O4-type structural transformation in LiMn2O4 under high pressure. , 2006, Journal of the American Chemical Society.

[230]  S. M. Shivaprasad,et al.  Effect of microstructure and stoichiometry on absorption in Mg intercalated MoO3 thin films , 2006 .

[231]  Lisa C. Klein,et al.  Vanadium oxide-propylene carbonate composite as a host for the intercalation of polyvalent cations , 2005 .

[232]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[233]  H. Yashiro,et al.  Synthesis of metal-doped todorokite-type MnO2 and its cathode characteristics for rechargeable lithium batteries , 2005 .

[234]  L. Malavasi,et al.  High-pressure stability of the tetragonal spinel MgMn{sub 2}O{sub 4}: Role of inversion , 2005 .

[235]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[236]  Xiaogang Zhang,et al.  Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. , 2004, Journal of colloid and interface science.

[237]  Jun Chen,et al.  TiS2 nanotubes as the cathode materials of Mg-ion batteries. , 2004, Chemical communications.

[238]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[239]  G. B. Reddy,et al.  Study of Mg ion Intercalation in Polycrystalline MoO3 Thin Films , 2004 .

[240]  Yadong Li,et al.  MoS2 Nanostructures: Synthesis and Electrochemical Mg2+ Intercalation , 2004 .

[241]  A. Manthiram,et al.  Factors influencing the chemical lithium extraction rate from layered LiNi1−y−zCoyMnzO2 cathodes , 2004 .

[242]  D. Aurbach,et al.  Kinetic and Thermodynamic Studies of Mg2 + and Li + Ion Insertion into the Mo6 S 8 Chevrel Phase , 2004 .

[243]  D. Aurbach,et al.  Leaching Chemistry and the Performance of the Mo6S8 Cathodes in Rechargeable Mg Batteries , 2004 .

[244]  G. Ceder,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[245]  Y. Sakurai,et al.  Electrochemical Insertion/Extraction of Calcium Ions Using Crystalline Vanadium Oxide , 2004 .

[246]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[247]  L. Nazar,et al.  Electrochemical Property: Structure Relationships in Monoclinic Li3-yV2(PO4)3. , 2003 .

[248]  L. Nazar,et al.  Electrochemical property: Structure relationships in monoclinic Li(3-y)V2(PO4)3. , 2003, Journal of the American Chemical Society.

[249]  M. Miyayama,et al.  Characterization of magnesium-intercalated V2O5/carbon composites , 2003 .

[250]  Masaru Miyayama,et al.  Mg Intercalation Properties into V 2 O 5 gel/Carbon Composites under High-Rate Condition , 2003 .

[251]  P. Ngoepe,et al.  Voltage Profile, Structural Prediction, and Electronic Calculations for MgxMo6S8 , 2003 .

[252]  Doron Aurbach,et al.  XPS Investigation of Surface Chemistry of Magnesium Electrodes in Contact with Organic Solutions of Organochloroaluminate Complex Salts , 2003 .

[253]  Y. Katayama,et al.  Preparation and electrochemical magnesium insertion behaviors of Mg0.5+y(MeyTi1-y)2(PO4)3 (Me = Cr, Fe) , 2002 .

[254]  M. Kanatzidis,et al.  Structure of V(2)O(5)*nH(2)O xerogel solved by the atomic pair distribution function technique. , 2002, Journal of the American Chemical Society.

[255]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[256]  G. Maggi,et al.  Structural and Transport Properties of Mg1−xMnxMn2O4±δ Spinels , 2002 .

[257]  Martin Winter,et al.  Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[258]  D. Aurbach,et al.  Electrolyte Solutions for Rechargeable Magnesium Batteries Based on Organomagnesium Chloroaluminate Complexes , 2002 .

[259]  G. Amatucci,et al.  Investigation of Yttrium and Polyvalent Ion Intercalation into Nanocrystalline Vanadium Oxide , 2001 .

[260]  Y. Katayama,et al.  Electrochemical insertion of magnesium to Mg0.5Ti2(PO4)3 , 2001 .

[261]  Y. Katayama,et al.  Magnesium insertion into Mg0.5+y(FeyTi1−y)2(PO4)3 , 2001 .

[262]  S. Komaba,et al.  Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode , 2001 .

[263]  Gerbrand Ceder,et al.  Layered-to-Spinel Phase Transition in Li x MnO2 , 2001 .

[264]  H. Takenouti,et al.  Anodic behaviour of manganese in alkaline medium , 2001 .

[265]  Linda F. Nazar,et al.  Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-Ion batteries , 2000 .

[266]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[267]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[268]  R. Renuka,et al.  An investigation on layered birnessite type manganese oxides for battery applications , 2000 .

[269]  G. Adachi,et al.  Divalent magnesium ion conducting characteristics in phosphate based solid electrolyte composites , 2000 .

[270]  H. Scherrer,et al.  Crystallography and density of states calculation of M x Mo 6 Se 8 ( M = T i , C r , F e , Ni ) , 1999 .

[271]  O. Haas,et al.  Magnesium Insertion Electrodes for Rechargeable Nonaqueous Batteries — A Competitive Alternative to Lithium? , 1999 .

[272]  D. Aurbach,et al.  On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions , 1999 .

[273]  A. Ratuszna,et al.  Crystal structure of cyanometallates Me3[Co(CN)6]2 and KMe[Fe(CN)6] with Me=Mn2+, Ni2+, Cu2+ , 1999, Powder Diffraction.

[274]  D. Lit Cumulative Author Index , 1999, Powder Diffraction.

[275]  Gerbrand Ceder,et al.  Structural stability of lithium manganese oxides , 1999 .

[276]  E. R. Stobbe,et al.  The reduction and oxidation behaviour of manganese oxides , 1999 .

[277]  M. Takano,et al.  High-Pressure Synthesis, Crystal Structure, and Metal–Semiconductor Transitions in the Tl2Ru2O7−δPyrochlore , 1998 .

[278]  S. Suib,et al.  A Review of Porous Manganese Oxide Materials , 1998 .

[279]  J. Galy,et al.  MgV2O5andδLixV2O5: A Comparative Structural Investigation , 1998 .

[280]  S. Passerini,et al.  Intercalation of Polyvalent Cations into V2O5 Aerogels , 1998 .

[281]  T. Yao,et al.  Crystal Structures of Hydrated Vanadium Oxides withδ-Type V2O5Layers:δ-M0.25V2O5·H2O,M=Ca, Ni , 1997 .

[282]  K. West,et al.  Lithium Intercalation into Layered LiMnO2 , 1997 .

[283]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[284]  J. Pereira‐Ramos,et al.  Electrochemical insertion of magnesium in a mixed manganese-cobalt oxide , 1997 .

[285]  T. Yao,et al.  Synthesis and Crystal Structure of σ-Zn0.25V2O5· H2O with a Novel Type of V2O5Layer , 1996 .

[286]  A. Manthiram,et al.  Chemical Extraction of Lithium from Layered LiCoO2 , 1996 .

[287]  J. Pereira‐Ramos,et al.  A new MnO2 tunnel related phase as host lattice for Li intercalation , 1995 .

[288]  U. Müller,et al.  η‐Mo4O11 und Mg2Mo3O8: eine neue Synthese und Verfeinerung ihrer Kristallstrukturen , 1995 .

[289]  P. Novák,et al.  Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(VI) oxide , 1995 .

[290]  C. Delmas,et al.  The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation , 1994 .

[291]  R. Nesper,et al.  Magnesium Insertion in Vanadium Oxides: A Structural Study , 1994 .

[292]  Vladimir G. Tsirelson,et al.  Multipole analysis of the electron density in triphylite, LiFePO4, using X‐ray diffraction data , 1993 .

[293]  P. Hagenmuller,et al.  Mg0.5Ti2(PO4)3 — a new member of the NASICON family with low thermal expansion , 1993 .

[294]  P. Novák,et al.  Electrochemical Insertion of Magnesium in Metal Oxides and Sulfides from Aprotic Electrolytes , 1993 .

[295]  C. Ritter,et al.  Neutron diffraction study on the crystal structure of lithium intercalated Chevrel phases , 1992 .

[296]  P. Bruce,et al.  Multivalent cation intercalation , 1992 .

[297]  W. David,et al.  Alpha manganese dioxide for lithium batteries: A structural and electrochemical study , 1992 .

[298]  P. Bruce,et al.  Structure of the cubic intercalate MgxTiS2 , 1992 .

[299]  D. Aurbach,et al.  The Electrochemical Behavior of Calcium Electrodes in a Few Organic Electrolytes , 1991 .

[300]  P. Bruce,et al.  Chemical intercalation of magnesium into solid hosts , 1991 .

[301]  L. Jarvis The beneficial effect of increased cathode water content on magnesium battery performance , 1990, Proceedings of the 34th International Power Sources Symposium.

[302]  T. Gregory,et al.  Nonaqueous Electrochemistry of Magnesium Applications to Energy Storage , 1990 .

[303]  Emanuel Peled,et al.  Rechargeable lithiumsulfur battery (extended abstract) , 1989 .

[304]  C. Delmas,et al.  The nasicon-type titanium phosphates Ati2(PO4)3 (A=Li, Na) as electrode materials , 1988 .

[305]  F. Jellinek,et al.  Crystal structures of tungsten disulfide and diselenide , 1987 .

[306]  D. Ilic,et al.  Vanadium oxides in electrodes for rechargeable lithium cells , 1987 .

[307]  J. Pereira‐Ramos,et al.  Electrochemical formation of a magnesium vanadium bronze MgxV2O5 in sulfone-based electrolytes at 150°C , 1987 .

[308]  J. Galy,et al.  A refinement of the structure of V2O5 , 1986 .

[309]  R. Fleming,et al.  The structure of the lithium-inserted metal oxide δLiV2O5 , 1986 .

[310]  Dahn,et al.  Structure and electrochemistry of LixMo6S8. , 1985, Physical review. B, Condensed matter.

[311]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[312]  J. Livage,et al.  Vanadium pentoxide gels , 1983 .

[313]  G. Pistoia Some Restatements on the Nature and Behavior of MnO2 for Li Batteries , 1982 .

[314]  John B. Goodenough,et al.  LixCoO2 (0, 1981 .

[315]  W. D. Kingery,et al.  Ionic Conductivity and Magnesium Vacancy Mobility in Magnesium Oxide , 1980 .

[316]  J. Dahn,et al.  Structure Determination of Lixtis2 by Neutron-Diffraction , 1980 .

[317]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[318]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[319]  H. Yamaguchi,et al.  Structure of cobalt dilithium silicate βII‐Li2CoSiO4 , 1979 .

[320]  M. Whittingham Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1979 .

[321]  J. Besenhard,et al.  Topotactic redox reactions of the channel type chalcogenides Mo3S4 and Mo3Se4 , 1977 .

[322]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[323]  M. Stanley Whittingham,et al.  The Role of Ternary Phases in Cathode Reactions , 1976 .

[324]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[325]  C. Riekel Structure refinement of TiSe2 by neutron diffraction , 1976 .

[326]  F. Dampier The Cathodic Behavior of CuS , MoO3, and MnO2 in Lithium Cells , 1974 .

[327]  G. Pistoia,et al.  MoO/sub 3/: a new electrode material for nonaqueous secondary battery applications , 1971 .

[328]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[329]  A. B. Scott,et al.  Discharge Mechanism of the V 2 O 5 Electrode , 1970 .

[330]  R. Manaila Cation migration in tetragonal spinels (MgMn2O4) , 1967 .

[331]  A. Sinha,et al.  Effect of temperature on the structure of manganites , 1962 .

[332]  E. G. Sherry,et al.  STRUCTURE DETERMINATION I , 1960 .