A Sufficient Statistics Construction of Exponential Family Levy Measure Densities for Nonparametric Conjugate Models

Conjugate pairs of distributions over innite dimensional spaces are prominent in machine learning, particularly due to the widespread adoption of Bayesian nonparametric methodologies for a host of models and applications. Much of the existing literature in the learning community focuses on processes possessing some form of computationally tractable conjugacy as is the case for the beta process and the gamma process (and, via normalization, the Dirichlet process). For these processes, conjugacy is proved via statistical machinery tailored to the particular model. We seek to address the problem of obtaining a general construction of prior distributions over innite dimensional spaces possessing distributional properties amenable to conjugacy. Our result is achieved by generalizing Hjort’s construction of the beta process via appropriate utilization of sucient statistics for exponential families.

[1]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[2]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[3]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[4]  H. Raiffa,et al.  Applied Statistical Decision Theory. , 1961 .

[5]  J. Kingman,et al.  Completely random measures. , 1967 .

[6]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[7]  D. Aldous Exchangeability and related topics , 1985 .

[8]  N. Hjort Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .

[9]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[10]  E. V. Burnaev,et al.  Формула обращения для безгранично делимых распределений@@@Inversion formula for infinitely divisible distributions , 2006 .

[11]  O. Barndorff-Nielsen,et al.  Probability measures, Lévy measures and analyticity in time , 2006, 0811.0678.

[12]  Michael I. Jordan,et al.  Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.

[13]  Joseph P. Romano,et al.  Testing Statistical Hypotheses, Third Edition , 2008, Springer texts in statistics.

[14]  Peter Orbanz,et al.  Construction of Nonparametric Bayesian Models from Parametric Bayes Equations , 2009, NIPS.

[15]  W. Eric L. Grimson,et al.  Construction of Dependent Dirichlet Processes based on Poisson Processes , 2010, NIPS.

[16]  M. R. Leadbetter Poisson Processes , 2011, International Encyclopedia of Statistical Science.

[17]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[18]  Yingjian Wang,et al.  Levy Measure Decompositions for the Beta and Gamma Processes , 2012, ICML.

[19]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .