Capturing the Connectivity of High-Dimensional Geometric Spaces by Parallelizable Random Sampling Techniques

Finding paths in high-dimensional gemetric spaces is a provably hard problem. Recently, a general randomized planning scheme has emerged as an effective approach to solve this problem. In this scheme, the planner samples the space at random and build a network of simple paths, called a probabilistic roadmap. This paper describes a basic probabilistic roadmap planner, which is easily parallelizable, and provides a formal analysis that explains its empirical success when the space satisfies two geometric properties called e-goodness and expansiveness.

[1]  Tsai-Yen Li,et al.  Assembly maintainability study with motion planning , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[2]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[3]  Mark H. Overmars,et al.  Probabilistic path planning , 1998 .

[4]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[5]  Henning Tolle,et al.  Motion planning with many degrees of freedom-random reflections at C-space obstacles , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[6]  D. S. SzyId,et al.  Parallel Computation: Models And Methods , 1998, IEEE Concurrency.

[7]  Jean-Claude Latombe,et al.  Planning motions with intentions , 1994, SIGGRAPH.

[8]  Mark H. Overmars,et al.  A probabilistic learning approach to motion planning , 1995 .

[9]  Mark H. Overmars,et al.  A random approach to motion planning , 1992 .

[10]  Sean Quinlan,et al.  Efficient distance computation between non-convex objects , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[11]  Nancy M. Amato,et al.  A randomized roadmap method for path and manipulation planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[12]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[13]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[14]  Carme Torras,et al.  Collision detection algorithms for motion planning , 1998 .

[15]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .

[16]  Lydia E. Kavraki,et al.  On finding narrow passages with probabilistic roadmap planners , 1998 .

[17]  Elmer G. Gilbert,et al.  Growth distances: new measures for object separation and penetration , 1996, IEEE Trans. Robotics Autom..

[18]  Chong Jin Ong,et al.  On the Quantification of Penetration between General Objects , 1997, Int. J. Robotics Res..

[19]  Brian Mirtich,et al.  V-Clip: fast and robust polyhedral collision detection , 1998, TOGS.

[20]  J. Schwartz,et al.  On the Complexity of Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman's Problem" , 1984 .

[21]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[22]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[23]  Dinesh Manocha,et al.  Collision Detection: Algorithms and Applications , 1996 .

[24]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[25]  Lydia E. Kavraki,et al.  Randomized query processing in robot path planning , 1995, STOC '95.

[26]  John E. Hopcroft,et al.  Reducing Multiple Object Motion Planning to Graph Searching , 1984, SIAM J. Comput..

[27]  Lydia E. Kavraki,et al.  A Random Sampling Scheme for Path Planning , 1997, Int. J. Robotics Res..

[28]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[29]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1998, IEEE Trans. Robotics Autom..

[30]  Lydia E. Kavraki,et al.  Random networks in configuration space for fast path planning , 1994 .

[31]  Deborah A. Joseph,et al.  On the complexity of reachability and motion planning questions (extended abstract) , 1985, SCG '85.

[32]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[33]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[34]  S. Sathiya Keerthi,et al.  A fast procedure for computing the distance between complex objects in three-dimensional space , 1988, IEEE J. Robotics Autom..

[35]  CalculationMing C. Lin,et al.  A Fast Algorithm for Incremental Distance , 1991 .

[36]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[37]  R. J. Schilling,et al.  Decoupling of a Two-Axis Robotic Manipulator Using Nonlinear State Feedback: A Case Study , 1984 .

[38]  J. Latombe,et al.  Randomized Query Processing in Robot Motion Planning , 1998 .

[39]  Ming C. Lin,et al.  A fast algorithm for incremental distance calculation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.