Control of Crystallization Processes Based on Population Balances

[1]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .

[2]  B. Paden,et al.  A different look at output tracking: control of a VTOL aircraft , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[3]  G. R. Jerauld,et al.  Simple conditions for the appearance of sustained oscillations in continuous crystallizers , 1983 .

[4]  M. Guay An algorithm for orbital feedback linearization of single-input control affine systems , 1999 .

[5]  W. Harmon Ray,et al.  Control of systems described by population balance equations—I. Controllability analysis , 1995 .

[6]  On the stability of a well stirred isothermal crystallizer , 1973 .

[7]  Panagiotis D. Christofides,et al.  Nonlinear control of particulate processes , 1999 .

[8]  H. Kramer,et al.  A Comparative Study of Various Size Distribution , 2002 .

[9]  Sohrab Rohani,et al.  On-line optimal control of a seeded batch cooling crystallizer , 2003 .

[10]  Ernst Dieter Gilles,et al.  Development, analysis and validation of population models for continuous and batch crystallizers , 2002 .

[11]  Sohrab Rohani,et al.  Control of crystal size distribution in a batch cooling crystallizer , 1990 .

[12]  Alan Jones,et al.  Optimal operation of a batch cooling crystallizer , 1974 .

[13]  Narayan S. Tavare,et al.  Industrial crystallization : process simulation analysis and design , 1995 .

[14]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[15]  A. Randolph,et al.  Feedback control of CSD in a KCL crystallizer with a fines dissolver , 1987 .

[16]  K. Glover,et al.  Robust stabilization of normalized coprime factor plant descriptions with H/sub infinity /-bounded uncertainty , 1989 .

[17]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[18]  Okko H. Bosgra,et al.  Design and experimental evaluation of stabilizing feedback controllers for continuous crystallizers , 1995 .

[19]  Sjoerd Dijkstra,et al.  Dynamic modeling of suspension crystallizers, using experimental data , 1995 .

[20]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[21]  Sohrab Rohani,et al.  Modeling and control of a continuous crystallization process Part 2. Model predictive control , 1999 .

[22]  S. Heinrich,et al.  Analysis of the start-up process in continuous fluidized bed spray granulation by population balance modelling , 2002 .

[23]  M. Fliess,et al.  On Differentially Flat Nonlinear Systems , 1992 .

[24]  K. Heiskanen On the difficulties of implementing particle size control in particulate processes , 1995 .

[25]  Ralf Rothfuß,et al.  Flatness based control of a nonlinear chemical reactor model , 1996, Autom..

[26]  Self‐generated oscillations in continuous crystallizers: Part II. An experimental study of an isothermal system , 1975 .

[27]  Martin Guay,et al.  Trajectory optimization for flat dynamic systems , 2001 .

[28]  Ralf Rothfuß Anwendung der flachheitsbasierten Analyse und Regelung nichtlinearer Mehrgrößensysteme , 1997 .

[29]  Pierre Rouchon,et al.  Industrial sensorless control of induction motors , 2001 .

[30]  A. Mersmann Crystallization Technology Handbook , 2001 .

[31]  Stanley Katz,et al.  Dynamic behavior of the well‐mixed isothermal crystallizer , 1967 .

[32]  M. Mazzotti,et al.  Modeling and Experimental Analysis of PSD Measurements through FBRM , 2000 .

[33]  Okko H. Bosgra,et al.  Controllability of particulate processes in relation to the sensor characteristics , 2000 .

[34]  Francis J. Doyle,et al.  Differential flatness based nonlinear predictive control of fed-batch bioreactors , 2001 .

[35]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[36]  Ernst Dieter Gilles,et al.  A population model for crystallization processes using two independent particle properties , 2001 .

[37]  R. S. Ó'Meadhra Modelling of the Kinetics of Suspension Crystallizers: A new Model for Secondary Nucleation , 1995 .

[38]  J. Rawlings,et al.  Model identification and control of solution crystallization processes: a review , 1993 .

[39]  A. Myerson Handbook of Industrial Crystallization , 2002 .

[40]  Béla G. Lakatos Stability and dynamics of continuous crystallizers , 1994 .

[41]  Alan D. Randolph,et al.  Crystal size distribution dynamics in a classified crystallizer: Part I. Experimental and theoretical study of cycling in a potassium chloride crystallizer , 1977 .

[42]  Ulrich Nieken,et al.  On the dynamic simulation of mass crystallization with fines removal , 1995 .

[43]  L. Biegler,et al.  Dynamic optimization of a batch cooling crystallization process , 1999 .

[44]  Jörg Raisch,et al.  H∞-Control of a continuous crystallizer , 2000 .

[45]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[46]  On‐Line control of supersaturation in a continuous cooling KCL crystallizer , 1995 .

[47]  Panagiotis D. Christofides,et al.  Robust Control of Particulate Processes Using Uncertain Population Balances , 2000 .

[48]  F. Puel,et al.  On-line ATR FTIR measurement of supersaturation during solution crystallization processes. Calibration and applications on three solute/solvent systems , 2001 .

[49]  Jörg Raisch,et al.  Controller design for an oscillatory DTB crystallizer based on a population balance model , 2002 .

[50]  W. Respondek,et al.  Orbital Feedback Linearization of Single-Input Nonlinear Control Systems , 1998 .

[51]  Jaroslav Nývlt,et al.  Programmed cooling of batch crystallizers , 1988 .

[52]  Alfons Mersmann,et al.  General prediction of median crystal sizes , 1992 .

[53]  A. Mersmann,et al.  How to measure supersaturation , 2002 .

[54]  FINES DESTRUCTION DURING BATCH CRYSTALLIZATION , 1987 .

[55]  Control of Crystallization Processes , 2006 .

[56]  David L. Ma,et al.  Worst-case analysis of finite-time control policies , 2001, IEEE Trans. Control. Syst. Technol..

[57]  Doraiswami Ramkrishna,et al.  Population Balances: Theory and Applications to Particulate Systems in Engineering , 2000 .

[58]  A. M. Neumann Characterizing Industrial Crystallizers of Different Scale and Type , 2001 .

[59]  Jörg Raisch,et al.  Population balance modelling and H∞-controller design for a crystallization process , 2002 .

[60]  I. A. Natalukha,et al.  INSTABILITY AND UNSTEADY PROCESSES OF THE BULK CONTINUOUS CRYSTALLIZATION.I, LINEAR STABILITY ANALYSIS , 1991 .

[61]  Hitay Özbay,et al.  Tutorial review H∞ optimal controller design for a class of distributed parameter systems , 1993 .

[62]  Sohrab Rohani,et al.  DYNAMIC MODELING AND OPERATION OF A SEEDED BATCH COOLING CRYSTALLIZER , 2001 .

[63]  Gregory D. Botsaris,et al.  Laboratory Simulation of Industrial Crystallizer Cycling , 1996 .

[64]  Reuel Shinnar,et al.  The stability and dynamic behavior of a continuous crystallizer with a fines trap , 1971 .

[65]  Sohrab Rohani,et al.  Extended kalman filter‐based nonlinear model predictive control of a continuous KCl‐NaCl crystallizer , 2001 .

[66]  D. Ramkrishna The Status of Population Balances , 1985 .

[67]  M. B. Ajinkya,et al.  ON THE OPTIMAL OPERATION OF CRYSTALLIZATION PROCESSES , 1974 .

[68]  Joachim Rudolph,et al.  Trajectory tracking for π-flat nonlinear delay systems with a motor example , 2001 .

[69]  D. L. Ma,et al.  Optimal seeding in batch crystallization , 1999 .

[70]  Philippe Martin,et al.  Flatness and motion planning : the car with n trailers. , 1992 .

[71]  A. Randolph,et al.  A population balance for countable entities , 1964 .

[72]  Suchin Arunsawatwong Stability of retarded delay differential systems , 1996 .

[73]  Okko H. Bosgra,et al.  Control of industrial crystallizers , 1992 .

[74]  Jörg Raisch,et al.  Feedforward control of batch crystallizers: an approach based on orbital flatness , 2004 .

[75]  R. A. Eek Control and Dynamic Modelling of Industrial Suspension Crystallizers , 1995 .

[76]  A. Isidori Nonlinear Control Systems , 1985 .

[77]  Panagiotis D. Christofides,et al.  Robust nonlinear control of a continuous crystallizer , 1999 .

[78]  Jörg Raisch,et al.  Control of batch cooling crystallization processes based on orbital flatness , 2003 .

[79]  Michael A. Henson,et al.  Model predictive control of continuous yeast bioreactors using cell population balance models , 2000 .

[80]  Jörg Raisch,et al.  Modeling, simulation and stabilizing H∞-control of an oscillating continuous crystallizer with fines dissolution , 2003 .

[81]  Dilum D. Dunuwila,et al.  ATR FTIR spectroscopy for in situ measurement of supersaturation , 1997 .

[82]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[83]  J. B. Rawlings,et al.  9 – Control of crystallization processes , 2002 .

[84]  Control of the Crystal Mean Size in a Pilot Plant Potash Crystallizer , 1997 .

[85]  D. L. Ma,et al.  Robust identification and control of batch processes , 2003, Comput. Chem. Eng..

[86]  J. W. Mullin,et al.  Programmed cooling crystallization of potassium sulphate solutions , 1974 .

[87]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[88]  Bernardus Anthonius Maria van Keulen H∞-control for the infinite-dimensional systems , 1993 .

[89]  Alan D. Randolph,et al.  Crystal size distribution dynamics in a classified crystallizer: Part II. Simulated control of crystal size distribution , 1977 .

[90]  P. Khargonekar,et al.  Approximation of infinite-dimensional systems , 1989 .

[91]  Alfons Mersmann,et al.  Brittle fracture in crystallization processes Part A. Attrition and abrasion of brittle solids , 1999 .

[92]  A. Mersmann,et al.  Brittle fracture in crystallization processes Part B. Growth of fragments and scale-up of suspension crystallizers , 1999 .

[93]  Hitay Özbay,et al.  Robust Control of Infinite Dimensional Systems: Frequency Domain Methods , 1996 .