Saccades during Object Viewing Modulate Oscillatory Phase in the Superior Temporal Sulcus

Saccadic eye movements (SEMs) are the primary means of gating visual information in primates and strongly influence visual perception. The active exploration of the visual environment (“active vision”) via SEMs produces suppression during saccades and enhancement afterward (i.e., during fixation) in occipital visual areas. In lateral temporal lobe visual areas, the influence, if any, of eye movements is less well understood, despite the necessity of these areas for forming coherent percepts of objects. The upper bank of the superior temporal sulcus (uSTS) is one such area whose sensitivity to SEMs is unknown. We therefore examined how saccades modulate local field potentials (LFPs) in the uSTS of macaque monkeys while they viewed face and nonface object stimuli. LFP phase concentration increased following fixation onset in the alpha (8–14 Hz), beta (14–30 Hz), and gamma (30–60 Hz) bands and was distinct from the image-evoked response. Furthermore, near-coincident onsets of fixation and image presentation—like those occurring in active vision—led to enhanced responses through greater phase concentration in the same frequency bands. Finally, single-unit activity was modulated by the phase of alpha, beta, and gamma oscillations, suggesting that the observed phase-locking influences spike timing in uSTS. Previous research implicates phase concentration in these frequency bands as a correlate of perceptual performance (Womelsdorf et al., 2006; Bosman et al., 2009). Together, these results demonstrate sensitivity to eye movements in an object-processing region of the brain and represent a plausible neural basis for the enhancement of object processing during active vision.

[1]  Steven F. Kalik,et al.  Analysis of perisaccadic field potentials in the occipitotemporal pathway during active vision. , 2003, Journal of neurophysiology.

[2]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  W. Maass,et al.  State-dependent computations: spatiotemporal processing in cortical networks , 2009, Nature Reviews Neuroscience.

[4]  Karl R Gegenfurtner,et al.  Geometry in Nature , 1993 .

[5]  Evgueniy V. Lubenov,et al.  Prefrontal Phase Locking to Hippocampal Theta Oscillations , 2005, Neuron.

[6]  D. Melcher Spatiotopic Transfer of Visual-Form Adaptation across Saccadic Eye Movements , 2005, Current Biology.

[7]  D. Burr,et al.  Selective suppression of the magnocellular visual pathway during saccadic eye movements , 1994, Nature.

[8]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[9]  J. A. Horel Retrieval of a face discrimination during suppression of monkey temporal cortex with cold , 1993, Neuropsychologia.

[10]  P. Latour Visual threshold during eye movements , 1962 .

[11]  Partha P. Mitra,et al.  Chronux: A platform for analyzing neural signals , 2010, Journal of Neuroscience Methods.

[12]  K. Hoffmann,et al.  Neural Dynamics of Saccadic Suppression , 2009, Journal of Neuroscience.

[13]  Caspar M. Schwiedrzik,et al.  (Micro)Saccades, corollary activity and cortical oscillations , 2009, Trends in Cognitive Sciences.

[14]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[15]  J. Gallant,et al.  Natural Stimulation of the Nonclassical Receptive Field Increases Information Transmission Efficiency in V1 , 2002, The Journal of Neuroscience.

[16]  Pascal Fries,et al.  A Microsaccadic Rhythm Modulates Gamma-Band Synchronization and Behavior , 2009, The Journal of Neuroscience.

[17]  C. Koch,et al.  Transcranial Electric Stimulation Entrains Cortical Neuronal Populations in Rats , 2010, The Journal of Neuroscience.

[18]  C. Gross,et al.  The effects of combined superior temporal polysensory area and frontal eye field lesions on eye movements in the macaque monkey , 1997, Behavioural Brain Research.

[19]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[20]  C. Gray,et al.  Cellular Mechanisms Contributing to Response Variability of Cortical Neurons In Vivo , 1999, The Journal of Neuroscience.

[21]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[22]  N. Logothetis,et al.  Category-Specific Responses to Faces and Objects in Primate Auditory Cortex , 2007, Frontiers in systems neuroscience.

[23]  J L Ringo,et al.  Eye movements modulate activity in hippocampal, parahippocampal, and inferotemporal neurons. , 1994, Journal of neurophysiology.

[24]  Laurie M. Wilcox,et al.  Depth ordering in natural stereoscopic images: The role of monocular occlusion , 2010 .

[25]  Mark Diamond The effect of saccades on visual sensitivity and time perception , 2002 .

[26]  Dhiraj Joshi,et al.  Object Categorization: Computer and Human Vision Perspectives , 2008 .

[27]  C. Schroeder,et al.  Neuronal Mechanisms of Cortical Alpha Oscillations in Awake-Behaving Macaques , 2008, The Journal of Neuroscience.

[28]  N. Logothetis,et al.  Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex , 2008, Current Biology.

[29]  Evgueniy V. Lubenov,et al.  Decoupling through Synchrony in Neuronal Circuits with Propagation Delays , 2008, Neuron.

[30]  Is the functional connectivity within temporal lobe influenced by saccadic eye movements? , 2002, Journal of neurophysiology.

[31]  C. Schroeder,et al.  Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations , 2011, The Journal of Neuroscience.

[32]  Michael R. Ibbotson,et al.  Effects of saccades on visual processing in primate MSTd , 2010, Vision Research.

[33]  Gustavo Deco,et al.  Oscillations, Phase-of-Firing Coding, and Spike Timing-Dependent Plasticity: An Efficient Learning Scheme , 2009, The Journal of Neuroscience.

[34]  Gustavo Deco,et al.  The Timing of Vision – How Neural Processing Links to Different Temporal Dynamics , 2011, Front. Psychology.

[35]  Marcelo A. Montemurro,et al.  Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns , 2009, Neuron.

[36]  G. Karmos,et al.  Transient cortical excitation at the onset of visual fixation. , 2008, Cerebral cortex.

[37]  Thomas S. Stepleton,et al.  Object Categorization: Neural Encoding of Scene Statistics for Surface and Object Inference , 2008 .

[38]  Christof Koch,et al.  Ephaptic coupling of cortical neurons , 2011, Nature Neuroscience.

[39]  Sean M Montgomery,et al.  The Effect of Spatially Inhomogeneous Extracellular Electric Fields on Neurons , 2010, The Journal of Neuroscience.

[40]  D. McCormick,et al.  Endogenous Electric Fields May Guide Neocortical Network Activity , 2010, Neuron.

[41]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[42]  Boris S. Gutkin,et al.  Turning On and Off with Excitation: The Role of Spike-Timing Asynchrony and Synchrony in Sustained Neural Activity , 2001, Journal of Computational Neuroscience.

[43]  Michael R. Ibbotson,et al.  Visual Perception: Saccadic Omission — Suppression or Temporal Masking? , 2009, Current Biology.

[44]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[45]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing , 1998, Neuroreport.

[46]  Marcelo A. Montemurro,et al.  Conversion of Phase Information into a Spike-Count Code by Bursting Neurons , 2010, PloS one.

[47]  Edmund T Rolls,et al.  The Receptive Fields of Inferior Temporal Cortex Neurons in Natural Scenes , 2003, The Journal of Neuroscience.

[48]  Gustavo Deco,et al.  The Role of Rhythmic Neural Synchronization in Rest and Task Conditions , 2011, Front. Hum. Neurosci..

[49]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[50]  K. Hoffmann,et al.  Neural Mechanisms of Saccadic Suppression , 2002, Science.

[51]  Marc-Oliver Gewaltig,et al.  Spike-latency codes and the effect of saccades , 2005, Neurocomputing.

[52]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[53]  Bart Krekelberg,et al.  Neural Correlates of Saccadic Suppression in Humans , 2004, Current Biology.

[54]  F A Miles,et al.  Release of fixation for pursuit and saccades in humans: evidence for shared inputs acting on different neural substrates. , 1996, Journal of neurophysiology.

[55]  Nikos K. Logothetis,et al.  Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex , 1998, Experimental Brain Research.

[56]  Sean P. MacEvoy,et al.  Macaque V1 activity during natural vision: effects of natural scenes and saccades. , 2008, Journal of neurophysiology.

[57]  W. Singer,et al.  Synchronization of neuronal responses in primary visual cortex of monkeys viewing natural images. , 2008, Journal of neurophysiology.

[58]  Sonja Grün,et al.  Saccade-Related Modulations of Neuronal Excitability Support Synchrony of Visually Elicited Spikes , 2011, Cerebral cortex.

[59]  R. Reid,et al.  Saccadic Eye Movements Modulate Visual Responses in the Lateral Geniculate Nucleus , 2002, Neuron.

[60]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[61]  Zoltan Nadasdy,et al.  Information Encoding and Reconstruction from the Phase of Action Potentials , 2009, Front. Syst. Neurosci..

[62]  J L Ringo,et al.  Activity linked to externally cued saccades in single units recorded from hippocampal, parahippocampal, and inferotemporal areas of macaques. , 1997, Journal of neurophysiology.

[63]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[64]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[65]  C. Schroeder,et al.  The Leading Sense: Supramodal Control of Neurophysiological Context by Attention , 2009, Neuron.

[66]  T D Albright,et al.  Effects of superior temporal polysensory area lesions on eye movements in the macaque monkey. , 1995, Journal of neurophysiology.

[67]  O. Paulsen,et al.  Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information , 2008, The Journal of physiology.

[68]  S. Gerber,et al.  Unsupervised Natural Experience Rapidly Alters Invariant Object Representation in Visual Cortex , 2008 .

[69]  J. A. Horel,et al.  The performance of visual tasks while segments of the inferotemporal cortex are suppressed by cold , 1987, Behavioural Brain Research.

[70]  M. Ibbotson,et al.  Enhanced motion sensitivity follows saccadic suppression in the superior temporal sulcus of the macaque cortex. , 2006, Cerebral cortex.

[71]  M. Rucci,et al.  Contributions of fixational eye movements to the discrimination of briefly presented stimuli. , 2003, Journal of vision.

[72]  Michael R. Ibbotson,et al.  Saccadic Modulation of Neural Responses: Possible Roles in Saccadic Suppression, Enhancement, and Time Compression , 2008, The Journal of Neuroscience.

[73]  J. Schoffelen,et al.  Nonparametric statistical testing of coherence differences , 2007, Journal of Neuroscience Methods.

[74]  Carrick C. Williams,et al.  Eye movements are functional during face learning , 2005, Memory & cognition.

[75]  D. Pandya,et al.  Frontal lobe connections of the superior temporal sulcus in the rhesus monkey , 1989, The Journal of comparative neurology.

[76]  M. Ibbotson,et al.  Visual perception and saccadic eye movements , 2011, Current Opinion in Neurobiology.

[77]  D. Pandya,et al.  Parietal, temporal, and occipita projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study , 1994, The Journal of comparative neurology.

[78]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[79]  D. Pandya,et al.  Thalamic connections of the cortex of the superior temporal sulcus in the rhesus monkey , 1989, The Journal of comparative neurology.

[80]  Peter Lakatos,et al.  Dynamics of Active Sensing and perceptual selection , 2010, Current Opinion in Neurobiology.

[81]  Zoltan Nadasdy,et al.  Binding by Asynchrony: The Neuronal Phase Code , 2010, Front. Neurosci..

[82]  T. Gawne,et al.  The responses of visual cortical neurons encode differences across saccades , 2003, Neuroreport.

[83]  C. Schroeder,et al.  Low-frequency neuronal oscillations as instruments of sensory selection , 2009, Trends in Neurosciences.

[84]  E. Rolls,et al.  Functional subdivisions of the temporal lobe neocortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.