MPC on manifolds with an application to the control of spacecraft attitude on SO(3)

We develop a model predictive control (MPC) design for systems with discrete-time dynamics evolving on smooth manifolds. We show that the properties of conventional MPC for dynamics evolving on $\mathbb R^n$ are preserved and we develop a design procedure for achieving similar properties. We also demonstrate that for discrete-time dynamics on manifolds with Euler characteristic not equal to 1, there do not exist globally stabilizing, continuous control laws. The MPC law is able to achieve global asymptotic stability on these manifolds, because the MPC law may be discontinuous. We apply the method to spacecraft attitude control, where the spacecraft attitude evolves on the Lie group SO(3) and for which a continuous globally stabilizing control law does not exist. In this case, the MPC law is discontinuous and achieves global stability.

[1]  N. McClamroch,et al.  Optimal Attitude Control of a Rigid Body Using Geometrically Exact Computations on SO(3) , 2006, math/0601424.

[2]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[3]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[4]  C. Byrnes,et al.  Design of discrete-time nonlinear control systems via smooth feedback , 1994, IEEE Trans. Autom. Control..

[5]  Stefano Di Cairano,et al.  Constrained spacecraft attitude control on SO(3) using reference governors and nonlinear model predictive control , 2014, 2014 American Control Conference.

[6]  R. Brockett System Theory on Group Manifolds and Coset Spaces , 1972 .

[7]  F. Leite,et al.  The Moser-Veselov equation , 2003 .

[8]  F. Allgower,et al.  Real-time feasibility of nonlinear predictive control for large scale processes-a case study , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[9]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[10]  A. Laub,et al.  Generalized eigenproblem algorithms and software for algebraic Riccati equations , 1984, Proceedings of the IEEE.

[11]  V. Jurdjevic Geometric control theory , 1996 .

[12]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[13]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[14]  Mario Zanon,et al.  Nonlinear MPC and MHE for Mechanical Multi-Body Systems with Application to Fast Tethered Airplanes , 2012 .

[15]  R. Brockett Lie Algebras and Lie Groups in Control Theory , 1973 .

[16]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[17]  H. Munthe-Kaas High order Runge-Kutta methods on manifolds , 1999 .

[18]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.

[19]  M. A. Henson,et al.  Receding horizon control and discontinuous state feedback stabilization , 1995 .

[20]  Keenan Crane,et al.  Lie group integrators for animation and control of vehicles , 2009, TOGS.

[21]  S. Bhat,et al.  A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon , 2000 .

[22]  N. McClamroch,et al.  A lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[23]  Graham C. Goodwin,et al.  Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.

[24]  V. Jurdjevic Optimal control on Lie groups and integrable Hamiltonian systems , 2011 .

[25]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[26]  Taeyoung Lee Computational geometric mechanics and control of rigid bodies , 2008 .

[27]  K. Deimling Fixed Point Theory , 2008 .

[28]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[29]  John Hauser,et al.  Optimal Control on Lie Groups: The Projection Operator Approach , 2013, IEEE Transactions on Automatic Control.

[30]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[31]  Roger W. Brockett,et al.  The early days of geometric nonlinear control , 2014, Autom..

[32]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[33]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .