MPC on manifolds with an application to the control of spacecraft attitude on SO(3)
暂无分享,去创建一个
Stefano Di Cairano | Ilya V. Kolmanovsky | Anthony M. Bloch | Rohit Gupta | Uros Kalabic | A. Bloch | I. Kolmanovsky | Rohit Gupta | Uros Kalabic | S. D. Cairano
[1] N. McClamroch,et al. Optimal Attitude Control of a Rigid Body Using Geometrically Exact Computations on SO(3) , 2006, math/0601424.
[2] A. Bloch,et al. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[3] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[4] C. Byrnes,et al. Design of discrete-time nonlinear control systems via smooth feedback , 1994, IEEE Trans. Autom. Control..
[5] Stefano Di Cairano,et al. Constrained spacecraft attitude control on SO(3) using reference governors and nonlinear model predictive control , 2014, 2014 American Control Conference.
[6] R. Brockett. System Theory on Group Manifolds and Coset Spaces , 1972 .
[7] F. Leite,et al. The Moser-Veselov equation , 2003 .
[8] F. Allgower,et al. Real-time feasibility of nonlinear predictive control for large scale processes-a case study , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[9] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .
[10] A. Laub,et al. Generalized eigenproblem algorithms and software for algebraic Riccati equations , 1984, Proceedings of the IEEE.
[11] V. Jurdjevic. Geometric control theory , 1996 .
[12] A. Iserles,et al. Lie-group methods , 2000, Acta Numerica.
[13] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[14] Mario Zanon,et al. Nonlinear MPC and MHE for Mechanical Multi-Body Systems with Application to Fast Tethered Airplanes , 2012 .
[15] R. Brockett. Lie Algebras and Lie Groups in Control Theory , 1973 .
[16] J. Moser,et al. Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .
[17] H. Munthe-Kaas. High order Runge-Kutta methods on manifolds , 1999 .
[18] L. Einkemmer. Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.
[19] M. A. Henson,et al. Receding horizon control and discontinuous state feedback stabilization , 1995 .
[20] Keenan Crane,et al. Lie group integrators for animation and control of vehicles , 2009, TOGS.
[21] S. Bhat,et al. A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon , 2000 .
[22] N. McClamroch,et al. A lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..
[23] Graham C. Goodwin,et al. Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.
[24] V. Jurdjevic. Optimal control on Lie groups and integrable Hamiltonian systems , 2011 .
[25] A. D. Lewis,et al. Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.
[26] Taeyoung Lee. Computational geometric mechanics and control of rigid bodies , 2008 .
[27] K. Deimling. Fixed Point Theory , 2008 .
[28] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[29] John Hauser,et al. Optimal Control on Lie Groups: The Projection Operator Approach , 2013, IEEE Transactions on Automatic Control.
[30] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[31] Roger W. Brockett,et al. The early days of geometric nonlinear control , 2014, Autom..
[32] H. Sussmann,et al. Control systems on Lie groups , 1972 .
[33] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .