Multi-Step Optimal Analog-to-Digital Conversion
暂无分享,去创建一个
[1] Tung-Sang Ng,et al. Modulators With Distinct Unit Circle NTF Zeros , 2001 .
[2] Avideh Zakhor,et al. On the stability of sigma delta modulators , 1993, IEEE Trans. Signal Process..
[3] I. Dobson,et al. Hexagonal sigma-delta modulation , 2003 .
[4] H. V. Sorensen,et al. An overview of sigma-delta converters , 1996, IEEE Signal Process. Mag..
[5] G. I. Bourdopoulos,et al. High-order vector sigma-delta modulators , 2000 .
[6] Wu Chou,et al. Quantization noise in single-loop sigma-delta modulation with sinusoidal inputs , 1989, IEEE Trans. Commun..
[7] Allen Gersho,et al. Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.
[8] Robert M. Gray,et al. Sigma-delta modulation with i.i.d. Gaussian inputs , 1990, IEEE Trans. Inf. Theory.
[9] Orla Feely. A tutorial introduction to non-linear dynamics and chaos and their application to sigma-delta modulators , 1997, Int. J. Circuit Theory Appl..
[10] Richard Schreier,et al. An empirical study of high-order single-bit delta-sigma modulators , 1993 .
[11] Vladimir Friedman. The structure of the limit cycles in sigma delta modulation , 1988, IEEE Trans. Commun..
[12] Mark Sandler,et al. Efficient dithering of sigma-delta modulators with adaptive bit flipping , 1995 .
[13] Nguyen T. Thao. Vector quantization analysis of ΣΔ modulation , 1996, IEEE Trans. Signal Process..
[14] L. O. Chua,et al. The effect of integrator leak in Σ-Δ modulation , 1991 .
[15] R. Gray,et al. Dithered Quantizers , 1993, Proceedings. 1991 IEEE International Symposium on Information Theory.
[16] G. P. Szegö,et al. Stability theory of dynamical systems , 1970 .
[17] Anthony C. Davies,et al. Constraints on constant-input oscillations of a bandpass sigma-delta modulator structure , 1997, Int. J. Circuit Theory Appl..
[18] John C. Kieffer,et al. Analysis of DC input response for a class of one-bit feedback encoders , 1990, IEEE Trans. Commun..
[19] Jan M. Maciejowski,et al. Predictive control : with constraints , 2002 .
[20] Ning He,et al. Multiloop sigma-delta quantization , 1992, IEEE Trans. Inf. Theory.
[21] Sundeep Rangan,et al. Quantization noise spectrum of double-loop sigma-delta converter with sinusoidal input , 1993, Proceedings of 36th Midwest Symposium on Circuits and Systems.
[22] Robert M. Gray,et al. Quantization noise spectra , 1990, IEEE Trans. Inf. Theory.
[23] SQren Hein. Exploiting Chaos to Suppress Spurious Tones in General Double-Loop EA Modulators , 1993 .
[24] Robert M. Gray,et al. Spectral analysis of quantization noise in a single-loop sigma-delta modulator with DC input , 1989, IEEE Trans. Commun..
[25] Xiaohong Sun,et al. Tonal behavior analysis of an adaptive second-order sigma-delta modulator , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).
[26] Naim A. Kheir,et al. Control system design , 2001, Autom..
[27] P. Vaidyanathan,et al. Results on lattice vector quantization with dithering , 1996 .
[28] O. Feely,et al. Lowpass sigma–delta modulation: an analysis by means of the critical lines tool , 2001 .
[29] S. Joe Qin,et al. A survey of industrial model predictive control technology , 2003 .
[30] L. Chua,et al. Symbolic dynamics of piecewise-linear maps , 1994 .
[31] L. Chua,et al. NONLINEAR DYNAMICS OF A CLASS OF ANALOG-TO-DIGITAL CONVERTERS , 1992 .
[32] P. Steiner,et al. A framework for analysis of high-order sigma-delta modulators , 1997 .
[33] James C. Candy,et al. A Use of Double Integration in Sigma Delta Modulation , 1985, IEEE Trans. Commun..
[34] S. Powell,et al. Efficient narrowband FIR and IFIR filters based on powers-of-two sigma-delta coefficient truncation , 1994 .
[35] S. C. Pinault,et al. On the behavior of the double-loop sigma-delta modulator , 1993 .
[36] Gabor C. Temes,et al. Oversampling delta-sigma data converters : theory, design, and simulation , 1992 .
[37] M. N. S. Swamy. Oversampled , Linear Predictive and Noise-Shaping Coders of Order N > 1 , 2017 .
[38] Robert M. Gray,et al. Oversampled Sigma-Delta Modulation , 1987, IEEE Trans. Commun..
[39] Timo Koski,et al. Statistics of the binary quantizer error in single-loop sigma-delta modulation with white Gaussian input , 1995, IEEE Trans. Inf. Theory.
[40] Kenneth C. Pohlmann,et al. Principles of Digital Audio , 1986 .
[41] D. Delchamps. Nonlinear dynamics of oversampling A-to-D converters , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[42] Graham C. Goodwin,et al. Moving horizon optimal quantizer for audio signals , 2003 .
[43] Letizia Lo Presti,et al. Efficient modified-sinc filters for sigma-delta A/D converters , 2000 .
[44] Robert M. Gray,et al. Sigma-delta modulation with leaky integration and constant input , 1992, IEEE Trans. Inf. Theory.
[45] R. Schreier,et al. An algorithm for computing convex positively invariant sets for delta-sigma modulators , 1997 .
[46] Peter J. Ramadge,et al. On the periodicity of symbolic observations of piecewise smooth discrete-time systems , 1990 .
[47] Mark Sandler,et al. Psychoacoustically Optimal Sigma-Delta Modulation , 1997 .
[48] Lars Risbo. Improved stability and performance from sigma-delta modulators using 1-bit vector quantization , 1993, 1993 IEEE International Symposium on Circuits and Systems.
[49] R. Schreier,et al. Delta-sigma data converters : theory, design, and simulation , 1997 .
[50] G. Goodwin,et al. Audio quantization from a receding horizon control perspective , 2003, Proceedings of the 2003 American Control Conference, 2003..
[51] John Vanderkooy,et al. Quantization and Dither: A Theoretical Survey , 1992 .
[52] T. Nakamoto,et al. Study of odor blender using solenoid valves controlled by delta–sigma modulation method for odor recorder , 2002 .
[53] G. I. Bourdopoulos,et al. Stabilization of third-order, single-stage Sigma-Delta modulators , 1999 .
[54] Jiun-Lang Huang,et al. Testing second-order delta–sigma modulators using pseudo-random patterns , 2002 .
[55] D. F. Delchamps,et al. Quantization noise in sigma-delta modulations driven by deterministic inputs , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[56] B. Leung,et al. High-order single-stage single-bit oversampling A/D converter stabilized with local feedback loops , 1993, Proceedings of 36th Midwest Symposium on Circuits and Systems.
[57] John Vanderkooy,et al. A Theory of Non-Subtractive Dither , 2003 .
[58] Ronan Farrell,et al. Bounding the integrator outputs of second-order sigma-delta modulators , 1998 .
[59] Wu Chou,et al. Dithering and its effects on sigma-delta and multistage sigma-delta modulation , 1991, IEEE Trans. Inf. Theory.
[60] A. J. Magrath,et al. Digital-domain dithering of sigma-delta modulators using bit flipping , 1997 .
[61] Ping Wah Wong. Fully sigma-delta modulation encoded FIR filters , 1992, IEEE Trans. Signal Process..
[62] Orla Feely,et al. Bandpass sigma-delta modulation-an analysis from the perspective of nonlinear dynamics , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.