Multi-Step Optimal Analog-to-Digital Conversion

An important aspect of analog-to-digital conversion is the impact of quantization errors. This paper outlines how finite horizon constrained optimization methods can be utilized to design converters which minimize a weighted measure of the quantization distortion. We propose a novel converter, which can be implemented as a feedback loop. It embeds Σ∆-conversion in a more general setting and typically provides better performance. We also examine the role played by the associated design parameters in ensuring error convergence.

[1]  Tung-Sang Ng,et al.  Modulators With Distinct Unit Circle NTF Zeros , 2001 .

[2]  Avideh Zakhor,et al.  On the stability of sigma delta modulators , 1993, IEEE Trans. Signal Process..

[3]  I. Dobson,et al.  Hexagonal sigma-delta modulation , 2003 .

[4]  H. V. Sorensen,et al.  An overview of sigma-delta converters , 1996, IEEE Signal Process. Mag..

[5]  G. I. Bourdopoulos,et al.  High-order vector sigma-delta modulators , 2000 .

[6]  Wu Chou,et al.  Quantization noise in single-loop sigma-delta modulation with sinusoidal inputs , 1989, IEEE Trans. Commun..

[7]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[8]  Robert M. Gray,et al.  Sigma-delta modulation with i.i.d. Gaussian inputs , 1990, IEEE Trans. Inf. Theory.

[9]  Orla Feely A tutorial introduction to non-linear dynamics and chaos and their application to sigma-delta modulators , 1997, Int. J. Circuit Theory Appl..

[10]  Richard Schreier,et al.  An empirical study of high-order single-bit delta-sigma modulators , 1993 .

[11]  Vladimir Friedman The structure of the limit cycles in sigma delta modulation , 1988, IEEE Trans. Commun..

[12]  Mark Sandler,et al.  Efficient dithering of sigma-delta modulators with adaptive bit flipping , 1995 .

[13]  Nguyen T. Thao Vector quantization analysis of ΣΔ modulation , 1996, IEEE Trans. Signal Process..

[14]  L. O. Chua,et al.  The effect of integrator leak in Σ-Δ modulation , 1991 .

[15]  R. Gray,et al.  Dithered Quantizers , 1993, Proceedings. 1991 IEEE International Symposium on Information Theory.

[16]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[17]  Anthony C. Davies,et al.  Constraints on constant-input oscillations of a bandpass sigma-delta modulator structure , 1997, Int. J. Circuit Theory Appl..

[18]  John C. Kieffer,et al.  Analysis of DC input response for a class of one-bit feedback encoders , 1990, IEEE Trans. Commun..

[19]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[20]  Ning He,et al.  Multiloop sigma-delta quantization , 1992, IEEE Trans. Inf. Theory.

[21]  Sundeep Rangan,et al.  Quantization noise spectrum of double-loop sigma-delta converter with sinusoidal input , 1993, Proceedings of 36th Midwest Symposium on Circuits and Systems.

[22]  Robert M. Gray,et al.  Quantization noise spectra , 1990, IEEE Trans. Inf. Theory.

[23]  SQren Hein Exploiting Chaos to Suppress Spurious Tones in General Double-Loop EA Modulators , 1993 .

[24]  Robert M. Gray,et al.  Spectral analysis of quantization noise in a single-loop sigma-delta modulator with DC input , 1989, IEEE Trans. Commun..

[25]  Xiaohong Sun,et al.  Tonal behavior analysis of an adaptive second-order sigma-delta modulator , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[26]  Naim A. Kheir,et al.  Control system design , 2001, Autom..

[27]  P. Vaidyanathan,et al.  Results on lattice vector quantization with dithering , 1996 .

[28]  O. Feely,et al.  Lowpass sigma–delta modulation: an analysis by means of the critical lines tool , 2001 .

[29]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[30]  L. Chua,et al.  Symbolic dynamics of piecewise-linear maps , 1994 .

[31]  L. Chua,et al.  NONLINEAR DYNAMICS OF A CLASS OF ANALOG-TO-DIGITAL CONVERTERS , 1992 .

[32]  P. Steiner,et al.  A framework for analysis of high-order sigma-delta modulators , 1997 .

[33]  James C. Candy,et al.  A Use of Double Integration in Sigma Delta Modulation , 1985, IEEE Trans. Commun..

[34]  S. Powell,et al.  Efficient narrowband FIR and IFIR filters based on powers-of-two sigma-delta coefficient truncation , 1994 .

[35]  S. C. Pinault,et al.  On the behavior of the double-loop sigma-delta modulator , 1993 .

[36]  Gabor C. Temes,et al.  Oversampling delta-sigma data converters : theory, design, and simulation , 1992 .

[37]  M. N. S. Swamy Oversampled , Linear Predictive and Noise-Shaping Coders of Order N > 1 , 2017 .

[38]  Robert M. Gray,et al.  Oversampled Sigma-Delta Modulation , 1987, IEEE Trans. Commun..

[39]  Timo Koski,et al.  Statistics of the binary quantizer error in single-loop sigma-delta modulation with white Gaussian input , 1995, IEEE Trans. Inf. Theory.

[40]  Kenneth C. Pohlmann,et al.  Principles of Digital Audio , 1986 .

[41]  D. Delchamps Nonlinear dynamics of oversampling A-to-D converters , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[42]  Graham C. Goodwin,et al.  Moving horizon optimal quantizer for audio signals , 2003 .

[43]  Letizia Lo Presti,et al.  Efficient modified-sinc filters for sigma-delta A/D converters , 2000 .

[44]  Robert M. Gray,et al.  Sigma-delta modulation with leaky integration and constant input , 1992, IEEE Trans. Inf. Theory.

[45]  R. Schreier,et al.  An algorithm for computing convex positively invariant sets for delta-sigma modulators , 1997 .

[46]  Peter J. Ramadge,et al.  On the periodicity of symbolic observations of piecewise smooth discrete-time systems , 1990 .

[47]  Mark Sandler,et al.  Psychoacoustically Optimal Sigma-Delta Modulation , 1997 .

[48]  Lars Risbo Improved stability and performance from sigma-delta modulators using 1-bit vector quantization , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[49]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[50]  G. Goodwin,et al.  Audio quantization from a receding horizon control perspective , 2003, Proceedings of the 2003 American Control Conference, 2003..

[51]  John Vanderkooy,et al.  Quantization and Dither: A Theoretical Survey , 1992 .

[52]  T. Nakamoto,et al.  Study of odor blender using solenoid valves controlled by delta–sigma modulation method for odor recorder , 2002 .

[53]  G. I. Bourdopoulos,et al.  Stabilization of third-order, single-stage Sigma-Delta modulators , 1999 .

[54]  Jiun-Lang Huang,et al.  Testing second-order delta–sigma modulators using pseudo-random patterns , 2002 .

[55]  D. F. Delchamps,et al.  Quantization noise in sigma-delta modulations driven by deterministic inputs , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[56]  B. Leung,et al.  High-order single-stage single-bit oversampling A/D converter stabilized with local feedback loops , 1993, Proceedings of 36th Midwest Symposium on Circuits and Systems.

[57]  John Vanderkooy,et al.  A Theory of Non-Subtractive Dither , 2003 .

[58]  Ronan Farrell,et al.  Bounding the integrator outputs of second-order sigma-delta modulators , 1998 .

[59]  Wu Chou,et al.  Dithering and its effects on sigma-delta and multistage sigma-delta modulation , 1991, IEEE Trans. Inf. Theory.

[60]  A. J. Magrath,et al.  Digital-domain dithering of sigma-delta modulators using bit flipping , 1997 .

[61]  Ping Wah Wong Fully sigma-delta modulation encoded FIR filters , 1992, IEEE Trans. Signal Process..

[62]  Orla Feely,et al.  Bandpass sigma-delta modulation-an analysis from the perspective of nonlinear dynamics , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.