General Object Reconstruction Based on Simplex Meshes

In this paper, we propose a general tridimensional reconstruction algorithm of range and volumetric images, based on deformable simplex meshes. Simplex meshes are topologically dual of triangulations and have the advantage of permitting smooth deformations in a simple and efficient manner. Our reconstruction algorithm can handle surfaces without any restriction on their shape or topology. The different tasks performed during the reconstruction include the segmentation of given objects in the scene, the extrapolation of missing data, and the control of smoothness, density, and geometric quality of the reconstructed meshes. The reconstruction takes place in two stages. First, the initialization stage creates a simplex mesh in the vicinity of the data model either manually or using an automatic procedure. Then, after a few iterations, the mesh topology can be modified by creating holes or by increasing its genus. Finally, an iterative refinement algorithm decreases the distance of the mesh from the data while preserving high geometric and topological quality. Several reconstruction examples are provided with quantitative and qualitative results.

[1]  Jean-Daniel Boissonnat,et al.  Geometric structures for three-dimensional shape representation , 1984, TOGS.

[2]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[3]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[4]  Jean-Laurent Mallet,et al.  Discrete smooth interpolation , 1989, TOGS.

[5]  Laurent D. Cohen,et al.  A finite element method applied to new active contour models and 3D reconstruction from cross sections , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[6]  Yasuhiko Watanabe,et al.  A Method for the Synchronized Acquisition of Cylindrical Range and Color Data , 1990, MVA.

[7]  Tony DeRose,et al.  Generalized B-spline surfaces of arbitrary topology , 1990, SIGGRAPH.

[8]  Shigeru Muraki,et al.  Volumetric shape description of range data using “Blobby Model” , 1991, SIGGRAPH.

[9]  MurakiShigeru Volumetric shape description of range data using Blobby Model , 1991 .

[10]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[11]  Parviz Rushenas Etude et implantation d'un système de modélisation géométrique multidimensionnelle pour la conception assistée par ordinateur , 1991 .

[12]  SzeliskiRichard,et al.  Surface modeling with oriented particle systems , 1992 .

[13]  D. Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[14]  Laurent D. Cohen,et al.  Using Deformable Surfaces to Segment 3-D Images and Infer Differential Structures , 1992, ECCV.

[15]  Demetri Terzopoulos,et al.  Adaptive meshes and shells: irregular triangulation, discontinuities, and hierarchical subdivision , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Guido Gerig,et al.  Surface parametrization and shape description , 1992, Other Conferences.

[17]  Katsushi Ikeuchi,et al.  Shape representation and image segmentation using deformable surfaces , 1992, Image Vis. Comput..

[18]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[19]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[20]  David J. Kriegman,et al.  Parametrizing and fitting bounded algebraic curves and surfaces , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  James S. Duncan,et al.  Deformable Fourier models for surface finding in 3-D images , 1992, Other Conferences.

[22]  David Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[23]  Jean-Daniel Boissonnat,et al.  Three-dimensional reconstruction of complex shapes based on the Delaunay triangulation , 1993, Electronic Imaging.

[24]  F. Leitner Segmentation dynamique d'images tridimensionnelles , 1993 .

[25]  Demetri Terzopoulos,et al.  A finite element model for 3D shape reconstruction and nonrigid motion tracking , 1993, 1993 (4th) International Conference on Computer Vision.

[26]  Baba C. Vemuri,et al.  Constructing Intrinsic Parameters with Active Models for Invariant Surface Reconstruction , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[28]  Nicholas Ayache,et al.  Fast segmentation, tracking, and analysis of deformable objects , 1993, 1993 (4th) International Conference on Computer Vision.

[29]  Timothy F. Cootes,et al.  Building and using flexible models incorporating grey-level information , 1993, 1993 (4th) International Conference on Computer Vision.

[30]  Andrew P. Witkin,et al.  Free-form shape design using triangulated surfaces , 1994, SIGGRAPH.

[31]  Jörg Peters,et al.  11. Constructing C1 Surfaces of Arbitrary Topology Using Biquadratic and Bicubic Splines , 1994, Designing Fair Curves and Surfaces.

[32]  Norman I. Badler,et al.  Hierarchical Shape Representation Using Locally Adaptive Finite Elements , 1994, ECCV.

[33]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[34]  Hervé Delingette,et al.  Simplex meshes: a general representation for 3D shape reconstruction , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Gérard G. Medioni,et al.  Surface description of complex objects from multiple range images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Demetri Terzopoulos,et al.  Medical Image Segmentation Using Topologically Adaptable Snakes , 1995, CVRMed.

[37]  Marie-Paule Cani,et al.  Semi-automatic Reconstruction of Implicit Surfaces for Medical Applications , 1995 .

[38]  Gabriel Taubin,et al.  Curve and surface smoothing without shrinkage , 1995, Proceedings of IEEE International Conference on Computer Vision.

[39]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[41]  Akshay K. Singh,et al.  Deformable models in medical image analysis , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[42]  Edmond Boyer Reconstruction et régularisation de surfaces d'objets courbes , 1996 .

[43]  Matthias Eck,et al.  Automatic reconstruction of B-spline surfaces of arbitrary topological type , 1996, SIGGRAPH.

[44]  Olivier D. Faugeras,et al.  From projective to Euclidean reconstruction , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[45]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[46]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[47]  Jj Org Peters Constructing C 1 Surfaces of Arbitrary Topology Using Biquadratic and Bicubic Splines , 1999 .

[48]  V. Savchenko,et al.  Shape Modeling , 2002 .

[49]  G. Taubin,et al.  PARAMETERIZING AND FITTING BOUNDED ALGEBRAIC CURVES AND SURFACES , 2004 .