Zero Shot Hashing

This paper provides a framework to hash images containing instances of unknown object classes. In many object recognition problems, we might have access to huge amount of data. It may so happen that even this huge data doesn't cover the objects belonging to classes that we see in our day to day life. Zero shot learning exploits auxiliary information (also called as signatures) in order to predict the labels corresponding to unknown classes. In this work, we attempt to generate the hash codes for images belonging to unseen classes, information of which is available only through the textual corpus. We formulate this as an unsupervised hashing formulation as the exact labels are not available for the instances of unseen classes. We show that the proposed solution is able to generate hash codes which can predict labels corresponding to unseen classes with appreciably good precision.

[1]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[2]  Sanja Fidler,et al.  Predicting Deep Zero-Shot Convolutional Neural Networks Using Textual Descriptions , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[3]  Hanjiang Lai,et al.  Supervised Hashing for Image Retrieval via Image Representation Learning , 2014, AAAI.

[4]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[5]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[6]  Qiang Liu,et al.  Kernel-based supervised hashing for cross-view similarity search , 2014, 2014 IEEE International Conference on Multimedia and Expo (ICME).

[7]  Svetlana Lazebnik,et al.  Iterative quantization: A procrustean approach to learning binary codes , 2011, CVPR 2011.

[8]  Babak Saleh,et al.  Write a Classifier: Zero-Shot Learning Using Purely Textual Descriptions , 2013, 2013 IEEE International Conference on Computer Vision.

[9]  Dongqing Zhang,et al.  Large-Scale Supervised Multimodal Hashing with Semantic Correlation Maximization , 2014, AAAI.

[10]  Shaogang Gong,et al.  Unsupervised Domain Adaptation for Zero-Shot Learning , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[11]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[12]  Wei Liu,et al.  Hashing with Graphs , 2011, ICML.

[13]  Svetlana Lazebnik,et al.  Locality-sensitive binary codes from shift-invariant kernels , 2009, NIPS.

[14]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[15]  Rongrong Ji,et al.  Supervised hashing with kernels , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[17]  Geoffrey E. Hinton,et al.  Neighbourhood Components Analysis , 2004, NIPS.

[18]  Ling Shao,et al.  Semantic Boosting Cross-Modal Hashing for efficient multimedia retrieval , 2016, Inf. Sci..

[19]  Kristen Grauman,et al.  Kernelized locality-sensitive hashing for scalable image search , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[20]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Prateek Jain,et al.  Fast Similarity Search for Learned Metrics , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  WangJun,et al.  Semi-Supervised Hashing for Large-Scale Search , 2012 .

[23]  Guiguang Ding,et al.  Latent semantic sparse hashing for cross-modal similarity search , 2014, SIGIR.

[24]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[25]  Raghavendra Udupa,et al.  Learning Hash Functions for Cross-View Similarity Search , 2011, IJCAI.

[26]  Philip H. S. Torr,et al.  An embarrassingly simple approach to zero-shot learning , 2015, ICML.

[27]  Guiguang Ding,et al.  Collective Matrix Factorization Hashing for Multimodal Data , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Mahdieh Soleymani Baghshah,et al.  Semi-supervised Zero-Shot Learning by a Clustering-based Approach , 2016, ArXiv.

[29]  Fumin Shen,et al.  Inductive Hashing on Manifolds , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Heng Tao Shen,et al.  Hashing for Similarity Search: A Survey , 2014, ArXiv.

[31]  Andrew Y. Ng,et al.  Zero-Shot Learning Through Cross-Modal Transfer , 2013, NIPS.

[32]  James Hays,et al.  SUN attribute database: Discovering, annotating, and recognizing scene attributes , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Antonio Torralba,et al.  Spectral Hashing , 2008, NIPS.

[34]  Venkatesh Saligrama,et al.  Zero-Shot Learning via Semantic Similarity Embedding , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[35]  Zi Huang,et al.  Linear cross-modal hashing for efficient multimedia search , 2013, ACM Multimedia.

[36]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[37]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[38]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[39]  Wei Liu,et al.  Discrete Graph Hashing , 2014, NIPS.

[40]  Shih-Fu Chang,et al.  Semi-Supervised Hashing for Large-Scale Search , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[42]  Wei Liu,et al.  Learning Binary Codes for Maximum Inner Product Search , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[43]  Geoffrey E. Hinton,et al.  Zero-shot Learning with Semantic Output Codes , 2009, NIPS.

[44]  Xinbo Gao,et al.  Semantic Topic Multimodal Hashing for Cross-Media Retrieval , 2015, IJCAI.

[45]  Antonio Torralba,et al.  Multidimensional Spectral Hashing , 2012, ECCV.

[46]  Trevor Darrell,et al.  Learning to Hash with Binary Reconstructive Embeddings , 2009, NIPS.

[47]  David J. Fleet,et al.  Minimal Loss Hashing for Compact Binary Codes , 2011, ICML.