Surface energies of elemental crystals

The surface energy is a fundamental property of the different facets of a crystal that is crucial to the understanding of various phenomena like surface segregation, roughening, catalytic activity, and the crystal’s equilibrium shape. Such surface phenomena are especially important at the nanoscale, where the large surface area to volume ratios lead to properties that are significantly different from the bulk. In this work, we present the largest database of calculated surface energies for elemental crystals to date. This database contains the surface energies of more than 100 polymorphs of about 70 elements, up to a maximum Miller index of two and three for non-cubic and cubic crystals, respectively. Well-known reconstruction schemes are also accounted for. The database is systematically improvable and has been rigorously validated against previous experimental and computational data where available. We will describe the methodology used in constructing the database, and how it can be accessed for further studies and design of materials.

[1]  M. Scheffler,et al.  The three-dimensional equilibrium crystal shape of Pb: Recent results of theory and experiment , 2007 .

[2]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[3]  S. Ogut,et al.  Shape of Platinum Nanoparticles Supported on SrTiO3: Experiment and Theory , 2007 .

[4]  Energetic, spatial, and momentum character of the electronic structure at a buried interface: The two-dimensional electron gas between two metal oxides , 2015, 1508.01832.

[5]  Arun S. Mujumdar,et al.  Introduction to Surface Chemistry and Catalysis , 1994 .

[6]  R. Hemley,et al.  Magnetic transition in compressed Fe{sub 3}C from x-ray emission spectroscopy , 2004 .

[7]  Wei Chen,et al.  FireWorks: a dynamic workflow system designed for high‐throughput applications , 2015, Concurr. Comput. Pract. Exp..

[8]  Yunhui Huang,et al.  Competition between intragranular and intergranular tunneling magnetoresistance in polycrystalline Sr2FeMoO6 , 2006 .

[9]  A density functional study of lithium bulk and surfaces , 1999, cond-mat/9907031.

[10]  W. Schirmer,et al.  Introduction to Surface Chemistry and Catalysis , 1995 .

[11]  Scheffler,et al.  Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals. , 1992, Physical review. B, Condensed matter.

[12]  M. Scheffler,et al.  First-principles study of low-index surfaces of lead , 2004 .

[13]  Pradeep Sharma,et al.  Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities , 2003 .

[14]  W. A. Miller,et al.  Surface free energies of solid metals: Estimation from liquid surface tension measurements , 1977 .

[15]  M. Scheffler,et al.  An Introduction to the Theory of Crystalline Elemental Solids and their Surfaces , 2013 .

[16]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[17]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[18]  Larson,et al.  Ab initio theory of the Si(111)-(7 x 7) surface reconstruction: A challenge for massively parallel computation. , 1992, Physical review letters.

[19]  Q. Luo,et al.  Adsorption of CO2 at ZnO: A Surface Structure Effect from DFT+U Calculations , 2013 .

[20]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .

[21]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[22]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[23]  Q. Jiang,et al.  Modelling of surface energies of elemental crystals , 2004 .

[24]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[25]  J. Métois,et al.  Absolute surface energy determination , 2004 .

[26]  A. Navrotsky Energetics of nanoparticle oxides: interplay between surface energy and polymorphism† , 2003, Geochemical transactions.

[27]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[28]  W. Harrison Surface reconstruction on semiconductors , 1976 .

[29]  Taeghwan Hyeon,et al.  The surface science of nanocrystals. , 2016, Nature materials.

[30]  Kenneth C. Mills,et al.  Review of surface tension data for metallic elements and alloys: Part 1 – Pure metals , 2006 .

[31]  J. B. Adams,et al.  Density functional study of graphite bulk and surface properties , 2006 .

[32]  R. J. Jaccodine,et al.  Surface Energy of Germanium and Silicon , 1963 .

[33]  K. Kokko,et al.  First-principles calculations for work function and surface energy of thin lithium films , 1996 .

[34]  Manos Mavrikakis,et al.  Electronic structure and catalysis on metal surfaces. , 2002, Annual review of physical chemistry.

[35]  Heinrich Rohrer,et al.  7 × 7 Reconstruction on Si(111) Resolved in Real Space , 1983 .

[36]  K. F. Wojciechowski Surface energy of metals: theory and experiment , 1999 .

[37]  K. Kokko,et al.  Assessing the Perdew-Burke-Ernzerhof exchange-correlation density functional revised for metallic bulk and surface systems , 2007, 0711.3747.

[38]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[39]  Friedhelm Bechstedt,et al.  Absolute surface energies of group-IV semiconductors: Dependence on orientation and reconstruction , 2002 .

[40]  Jens K Nørskov,et al.  Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. , 2006, Angewandte Chemie.

[41]  S. Binnie Ab initio surface energetics: beyond chemical accuracy , 2011 .

[42]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[43]  Shyue Ping Ong,et al.  Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries. , 2014, Nano letters.

[44]  Thomas Bligaard,et al.  The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .

[45]  J. Bell,et al.  Experiment and Theory , 1968 .

[46]  H. Skriver,et al.  Full charge-density scheme with a kinetic-energy correction: Application to ground-state properties of the 4d metals , 1997 .

[47]  M. Nowicki,et al.  Absolute surface free energies of Pb , 2002 .

[48]  C. Chan,et al.  Surface atomic structures, surface energies, and equilibrium crystal shape of molybdenum , 1998 .

[49]  J. Gilman,et al.  Direct Measurements of the Surface Energies of Crystals , 1960 .

[50]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[51]  J. F. Nicholas,et al.  Bonds broken at atomically flat crystal surfaces—I , 1962 .

[52]  D. A. Olsen,et al.  Critical surface tension values of Group VIA elements , 1967 .

[53]  Qi Wang,et al.  Effect of the components' interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT + U calculations. , 2015, Physical chemistry chemical physics : PCCP.

[54]  J. Kollár,et al.  The surface energy of metals , 1998 .

[55]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[56]  A. K. Niessen,et al.  Cohesion in metals , 1988 .

[57]  Guozhong Cao,et al.  Nanomaterials for energy conversion and storage. , 2013, Chemical Society reviews.

[58]  Robert W. Balluffi,et al.  Kinetics of Materials: Balluffi/Kinetics , 2005 .

[59]  G. Lowry,et al.  Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. , 2009, Nature nanotechnology.

[60]  Wei Chen,et al.  Nucleation of metastable aragonite CaCO3 in seawater , 2015, Proceedings of the National Academy of Sciences.

[61]  S. Miracle-Sole Facet shapes in a Wulff crystal , 2012, 1206.3736.

[62]  Ani Anciaux-Sedrakian,et al.  Accelerating VASP electronic structure calculations using graphic processing units , 2012, J. Comput. Chem..

[63]  H. E. Farnsworth,et al.  Structure and Adsorption Characteristics of Clean Surfaces of Germanium and Silicon , 1959 .

[64]  Gerbrand Ceder,et al.  Efficient creation and convergence of surface slabs , 2013 .

[65]  J. F. Nicholas,et al.  Bonds broken at atomically flat crystal surfaces—II: Crystals containing many atoms in a primitive unit cell , 1962 .

[66]  V. Van Speybroeck,et al.  Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals , 2012, 1204.2733.

[67]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[68]  A. Soon,et al.  Exploring stereographic surface energy maps of cubic metals via an effective pair-potential approach , 2016 .

[69]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[70]  P. Lazic,et al.  DFT calculations of (111) surfaces of Au, Cu, and Pt: stability and reconstruction , 2003 .

[71]  Maxwell Hutchinson,et al.  VASP on a GPU: Application to exact-exchange calculations of the stability of elemental boron , 2012, Comput. Phys. Commun..

[72]  Jian-min Zhang,et al.  Missing row reconstruction on three low index surfaces of ten FCC metals , 2009 .

[73]  Dirk Sander,et al.  Adsorbate-induced surface reconstruction and surface-stress changes in Cu(100)/O: Experiment and theory , 2006 .

[74]  T. Einstein Equilibrium Shape of Crystals , 2015, 1501.02213.

[75]  Søren Dahl,et al.  The Brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts , 2001 .

[76]  B. J. Keene,et al.  Review of data for the surface tension of pure metals , 1993 .

[77]  Anubhav Jain,et al.  The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles , 2015 .

[78]  Anne Strauss,et al.  Kinetics Of Materials , 2016 .

[79]  K. Heinz,et al.  The superstructures of the clean Pt(100) and Ir(100) surfaces , 1979 .

[80]  L. Curtiss,et al.  Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. , 2005, Nano letters.

[81]  S. Logothetidis,et al.  Electronic and structural properties of TiB2: Bulk, surface, and nanoscale effects , 2011 .

[82]  B. Hammer,et al.  Theoretical Surface Science and Catalysis — Calculations and Concepts , 2000 .

[83]  R. Snyders,et al.  Selenium surface energy determination from size-dependent considerations , 2013, 2013 IEEE 5th International Nanoelectronics Conference (INEC).

[84]  P. H. Dederichs,et al.  Applicability of the broken-bond rule to the surface energy of the fcc metals , 2002 .

[85]  N. Kosova,et al.  Surface chemistry study of LiCoO2 coated with alumina , 2008 .

[86]  Wei-Bing Zhang,et al.  Equilibrium Crystal Shape of Ni from First Principles , 2013 .

[87]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[88]  M. Scheffler,et al.  Converged properties of clean metal surfaces by all-electron first-principles calculations , 2006 .

[89]  Jacobson,et al.  Equilibrium shape of Si. , 1993, Physical review letters.