Approximation of the joint spectral radius using sum of squares

[1]  A. L. Zelentsovsky Nonquadratic Lyapunov functions for robust stability analysis of linear uncertain systems , 1994, IEEE Trans. Autom. Control..

[2]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[3]  Pablo A. Parrilo,et al.  On cone-invariant linear matrix inequalities , 2000, IEEE Trans. Autom. Control..

[4]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[5]  Alle Leizarowitz,et al.  On infinite products of stochastic matrices , 1992 .

[6]  Lieven Vandenberghe,et al.  Discrete Transforms, Semidefinite Programming, and Sum-of-Squares Representations of Nonnegative Polynomials , 2006, SIAM J. Optim..

[7]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[8]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[9]  P. Parrilo,et al.  From coefficients to samples: a new approach to SOS optimization , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[10]  Robert K. Brayton,et al.  Constructive stability and asymptotic stability of dynamical systems , 1980 .

[11]  I. Daubechies,et al.  Corrigendum/addendum to: Sets of matrices all infinite products of which converge , 2001 .

[12]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[13]  M. Maesumi An efficient lower bound for the generalized spectral radius , 1996 .

[14]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[15]  M. Marcus Finite dimensional multilinear algebra , 1973 .

[16]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[17]  N. Z. Shor Class of global minimum bounds of polynomial functions , 1987 .

[18]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[19]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[20]  Paul Van Dooren,et al.  Optimization Problems over Positive Pseudopolynomial Matrices , 2003, SIAM J. Matrix Anal. Appl..

[21]  Richard Courant,et al.  Studies and Essays presented to R Courant on his 60th Birthday, January 8, 1948 , 1948, Nature.

[22]  Pablo A. Parrilo,et al.  Approximation of the Joint Spectral Radius of a Set of Matrices Using Sum of Squares , 2007, HSCC.

[23]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[24]  F. Wirth The generalized spectral radius and extremal norms , 2002 .

[25]  M. SIAMJ. CHARACTERIZATIONS OF SCALING FUNCTIONS: CONTINUOUS SOLUTIONS∗ , 1994 .

[26]  Mau-Hsiang Shih,et al.  Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .

[27]  V. Protasov The Geometric Approach for Computing the Joint Spectral Radius , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[28]  R. Brockett Lie Algebras and Lie Groups in Control Theory , 1973 .

[29]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[30]  Clyde F. Martin,et al.  A Converse Lyapunov Theorem for a Class of Dynamical Systems which Undergo Switching , 1999, IEEE Transactions on Automatic Control.

[31]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[32]  G. Gripenberg COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .

[33]  T. Andô,et al.  Simultaneous Contractibility , 1998 .

[34]  V. Protasov The generalized joint spectral radius. A geometric approach , 1997 .

[35]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[36]  Y. Nesterov,et al.  On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .

[37]  Vincent D. Blondel,et al.  Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..