Optimal Control for Structurally Sparse Systems using Graphical Inference

Dynamical systems with a distributed yet interconnected structure, like multi-rigid-body robots or large-scale multi-agent systems, introduce valuable sparsity into the system dynamics that can be exploited in an optimal control setting for speeding up computation and improving numerical conditioning. Conventional approaches for solving the Optimal Control Problem (OCP) rarely capitalize on such structural sparsity, and hence suffer from a cubic computational complexity growth as the dimensionality of the system scales. In this paper, we present an OCP formulation that relies on graphical models to capture the sparsely-interconnected nature of the system dynamics. Such a representational choice allows the use of contemporary graphical inference algorithms that enable our solver to achieve a linear time complexity in the state and control dimensions as well as the time horizon. We demonstrate the numerical and computational advantages of our approach on a canonical dynamical system in simulation.

[1]  Michael Kaess,et al.  ICS: Incremental Constrained Smoothing for State Estimation , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[2]  On the modified Gram-Schmidt algorithm for weighted and constrained linear least squares problems , 1995 .

[3]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering , 2011, 2011 IEEE International Conference on Robotics and Automation.

[4]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[5]  Frank Dellaert,et al.  A Unified Method for Solving Inverse, Forward, and Hybrid Manipulator Dynamics using Factor Graphs , 2019, ArXiv.

[6]  Zachary Manchester,et al.  Linear-Time Variational Integrators in Maximal Coordinates , 2020, WAFR.

[7]  Jimenez Rodriguez,et al.  A Factor Graph Approach To Constrained Optimization , 2017 .

[8]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[9]  Frank Dellaert,et al.  A factor graph approach to estimation and model predictive control on Unmanned Aerial Vehicles , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[10]  Claire Tomlin,et al.  Efficient Computation of Feedback Control for Equality-Constrained LQR , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[11]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[12]  Byron Boots,et al.  Continuous-time Gaussian process motion planning via probabilistic inference , 2017, Int. J. Robotics Res..

[13]  Marc Toussaint,et al.  Robot trajectory optimization using approximate inference , 2009, ICML '09.

[14]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[15]  Frank Dellaert,et al.  Batch and Incremental Kinodynamic Motion Planning using Dynamic Factor Graphs , 2020, ArXiv.

[16]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[17]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[18]  David Baraff,et al.  Linear-time dynamics using Lagrange multipliers , 1996, SIGGRAPH.

[19]  M. McCall,et al.  Rigid Body Dynamics , 2008 .

[20]  Byron Boots,et al.  Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs , 2016, Robotics: Science and Systems.

[21]  F. Dellaert Factor Graphs and GTSAM: A Hands-on Introduction , 2012 .

[22]  Frank Dellaert,et al.  DDF-SAM: Fully distributed SLAM using Constrained Factor Graphs , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Frank Dellaert,et al.  Equality Constrained Linear Optimal Control With Factor Graphs , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[24]  Timothy A. Davis,et al.  A column approximate minimum degree ordering algorithm , 2000, TOMS.

[25]  Frank Dellaert,et al.  A Factor-Graph Approach for Optimization Problems with Dynamics Constraints , 2020, ArXiv.

[26]  David Q. Mayne,et al.  Differential Dynamic Programming–A Unified Approach to the Optimization of Dynamic Systems , 1973 .

[27]  Jonas Buchli,et al.  The control toolbox — An open-source C++ library for robotics, optimal and model predictive control , 2018, 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR).

[28]  Frank Dellaert,et al.  Factor Graphs for Robot Perception , 2017, Found. Trends Robotics.