Stochastic and deterministic fault detection for randomized gossip algorithms

[1]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[2]  Rita Cunha,et al.  Gossip average consensus in a Byzantine environment using stochastic Set-Valued Observers , 2013, 52nd IEEE Conference on Decision and Control.

[3]  Jeff S. Shamma,et al.  Set-valued observers and optimal disturbance rejection , 1999, IEEE Trans. Autom. Control..

[4]  Martti Penttonen,et al.  A Reliable Randomized Algorithm for the Closest-Pair Problem , 1997, J. Algorithms.

[5]  K. Glover,et al.  Identifiability of linear and nonlinear dynamical systems , 1976 .

[6]  Antonio Bicchi,et al.  Consensus Computation in Unreliable Networks: A System Theoretic Approach , 2010, IEEE Transactions on Automatic Control.

[7]  József Bokor,et al.  Fault detection and isolation in nonlinear systems , 2009, Annu. Rev. Control..

[8]  M. Borel Les probabilités dénombrables et leurs applications arithmétiques , 1909 .

[9]  Pravin Varaiya,et al.  Distributed Online Simultaneous Fault Detection for Multiple Sensors , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[10]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[11]  Christopher Edwards,et al.  Robust Fault Estimation Using Relative Information in Linear Multi-Agent Networks , 2014, IEEE Transactions on Automatic Control.

[12]  Tor Arne Johansen,et al.  Fault tolerant control allocation using unknown input observers , 2014, Autom..

[13]  Paulo Rosa,et al.  Fault detection and isolation of LPV systems using set-valued observers: An application to a fixed-wing aircraft , 2013 .

[14]  Imad M. Jaimoukha,et al.  On-line fault detection and isolation for linear discrete-time uncertain systems , 2014, Autom..

[15]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[16]  Shreyas Sundaram,et al.  Distributed Function Calculation via Linear Iterative Strategies in the Presence of Malicious Agents , 2011, IEEE Transactions on Automatic Control.

[17]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[18]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[19]  Louise E. Moser,et al.  Solving Consensus in a Byzantine Environment Using an Unreliable Fault Detector , 1997, OPODIS.

[20]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[21]  Pedro Casau,et al.  FITBOX - A Fault Isolation Toolbox★ , 2015 .

[22]  Carlos Silvestre,et al.  Finite-time average consensus in a Byzantine environment using Set-Valued Observers , 2014, 2014 American Control Conference.

[23]  E. Gilbert,et al.  Computation of minimum-time feedback control laws for discrete-time systems with state-control constraints , 1987 .

[24]  H. Witsenhausen Sets of possible states of linear systems given perturbed observations , 1968 .

[25]  J. Telgen Minimal representation of convex polyhedral sets , 1982 .

[26]  Carlos Silvestre,et al.  On the distinguishability of discrete linear time-invariant dynamic systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[27]  C. F. Long,et al.  Influence of the manufacturing process on the scheduling problem , 1976 .

[28]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2005, Autom..