Stochastic and deterministic fault detection for randomized gossip algorithms
暂无分享,去创建一个
Carlos Silvestre | João Pedro Hespanha | Daniel Silvestre | Paulo Andre Nobre Rosa | J. Hespanha | C. Silvestre | D. Silvestre | P. Rosa
[1] Fred C. Schweppe,et al. Uncertain dynamic systems , 1973 .
[2] Rita Cunha,et al. Gossip average consensus in a Byzantine environment using stochastic Set-Valued Observers , 2013, 52nd IEEE Conference on Decision and Control.
[3] Jeff S. Shamma,et al. Set-valued observers and optimal disturbance rejection , 1999, IEEE Trans. Autom. Control..
[4] Martti Penttonen,et al. A Reliable Randomized Algorithm for the Closest-Pair Problem , 1997, J. Algorithms.
[5] K. Glover,et al. Identifiability of linear and nonlinear dynamical systems , 1976 .
[6] Antonio Bicchi,et al. Consensus Computation in Unreliable Networks: A System Theoretic Approach , 2010, IEEE Transactions on Automatic Control.
[7] József Bokor,et al. Fault detection and isolation in nonlinear systems , 2009, Annu. Rev. Control..
[8] M. Borel. Les probabilités dénombrables et leurs applications arithmétiques , 1909 .
[9] Pravin Varaiya,et al. Distributed Online Simultaneous Fault Detection for Multiple Sensors , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).
[10] Stephen P. Boyd,et al. Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.
[11] Christopher Edwards,et al. Robust Fault Estimation Using Relative Information in Linear Multi-Agent Networks , 2014, IEEE Transactions on Automatic Control.
[12] Tor Arne Johansen,et al. Fault tolerant control allocation using unknown input observers , 2014, Autom..
[13] Paulo Rosa,et al. Fault detection and isolation of LPV systems using set-valued observers: An application to a fixed-wing aircraft , 2013 .
[14] Imad M. Jaimoukha,et al. On-line fault detection and isolation for linear discrete-time uncertain systems , 2014, Autom..
[15] Antonio Vicino,et al. Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..
[16] Shreyas Sundaram,et al. Distributed Function Calculation via Linear Iterative Strategies in the Presence of Malicious Agents , 2011, IEEE Transactions on Automatic Control.
[17] D. Bertsekas,et al. Recursive state estimation for a set-membership description of uncertainty , 1971 .
[18] F. Schweppe. Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .
[19] Louise E. Moser,et al. Solving Consensus in a Byzantine Environment Using an Unreliable Fault Detector , 1997, OPODIS.
[20] Ketan Mulmuley,et al. Computational geometry - an introduction through randomized algorithms , 1993 .
[21] Pedro Casau,et al. FITBOX - A Fault Isolation Toolbox★ , 2015 .
[22] Carlos Silvestre,et al. Finite-time average consensus in a Byzantine environment using Set-Valued Observers , 2014, 2014 American Control Conference.
[23] E. Gilbert,et al. Computation of minimum-time feedback control laws for discrete-time systems with state-control constraints , 1987 .
[24] H. Witsenhausen. Sets of possible states of linear systems given perturbed observations , 1968 .
[25] J. Telgen. Minimal representation of convex polyhedral sets , 1982 .
[26] Carlos Silvestre,et al. On the distinguishability of discrete linear time-invariant dynamic systems , 2011, IEEE Conference on Decision and Control and European Control Conference.
[27] C. F. Long,et al. Influence of the manufacturing process on the scheduling problem , 1976 .
[28] Eduardo F. Camacho,et al. Guaranteed state estimation by zonotopes , 2005, Autom..