Sensory-evoked LTP driven by dendritic plateau potentials in vivo

[1]  Christine Grienberger,et al.  NMDA Receptor-Dependent Multidendrite Ca2+ Spikes Required for Hippocampal Burst Firing In Vivo , 2014, Neuron.

[2]  M. Larkum,et al.  NMDA spikes enhance action potential generation during sensory input , 2014, Nature Neuroscience.

[3]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[4]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[5]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[6]  M. Castro-Alamancos,et al.  Synaptic Cooperativity Regulates Persistent Network Activity in Neocortex , 2013, The Journal of Neuroscience.

[7]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[8]  E. Kuramoto,et al.  A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. , 2012, Cerebral cortex.

[9]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[10]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[11]  D. Feldman The Spike-Timing Dependence of Plasticity , 2012, Neuron.

[12]  A. Holtmaat,et al.  Spike-Timing-Dependent Potentiation of Sensory Surround in the Somatosensory Cortex Is Facilitated by Deprivation-Mediated Disinhibition , 2012, Neuron.

[13]  D. Feldmeyer Excitatory neuronal connectivity in the barrel cortex , 2012, Front. Neuroanat..

[14]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[15]  J. Poulet,et al.  Thalamic control of cortical states , 2012, Nature Neuroscience.

[16]  Wen-Liang L Zhou,et al.  The decade of the dendritic NMDA spike , 2010, Journal of neuroscience research.

[17]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[18]  Pierre Mégevand,et al.  Long-Term Plasticity in Mouse Sensorimotor Circuits after Rhythmic Whisker Stimulation , 2009, The Journal of Neuroscience.

[19]  N. Spruston,et al.  Synaptic Depolarization Is More Effective than Back-Propagating Action Potentials during Induction of Associative Long-Term Potentiation in Hippocampal Pyramidal Neurons , 2009, The Journal of Neuroscience.

[20]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[21]  K. Svoboda,et al.  Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window , 2009, Nature Protocols.

[22]  G. Stuart,et al.  Is action potential threshold lowest in the axon? , 2008, Nature Neuroscience.

[23]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[24]  D. Kleinfeld,et al.  'Where' and 'what' in the whisker sensorimotor system , 2008, Nature Reviews Neuroscience.

[25]  W. Denk,et al.  Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo , 2008, Nature Methods.

[26]  K. Svoboda,et al.  Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex , 2006, PLoS biology.

[27]  Feng Zhang,et al.  Channelrhodopsin-2 and optical control of excitable cells , 2006, Nature Methods.

[28]  N. Spruston,et al.  Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity , 2005, Nature Neuroscience.

[29]  Diego Contreras,et al.  Synaptic Responses to Whisker Deflections in Rat Barrel Cortex as a Function of Cortical Layer and Stimulus Intensity , 2004, The Journal of Neuroscience.

[30]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[31]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[32]  A. Grinvald,et al.  Spatiotemporal Dynamics of Sensory Responses in Layer 2/3 of Rat Barrel Cortex Measured In Vivo by Voltage-Sensitive Dye Imaging Combined with Whole-Cell Voltage Recordings and Neuron Reconstructions , 2003, The Journal of Neuroscience.

[33]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[34]  Martin Deschênes,et al.  The organization of corticothalamic projections: reciprocity versus parity , 1998, Brain Research Reviews.

[35]  F. Ebner,et al.  Experience-Dependent Plasticity of Adult Rat S1 Cortex Requires Local NMDA Receptor Activation , 1998, The Journal of Neuroscience.

[36]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[37]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[38]  E. Welker,et al.  The contribution of NMDA and non-NMDA receptors to fast and slow transmission of sensory information in the rat SI barrel cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[40]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex , 1992, The Journal of comparative neurology.

[41]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..