The Harvard organic photovoltaic dataset

The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.

[1]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[2]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[3]  Benjamin G. Levine,et al.  Simulated evolution of fluorophores for light emitting diodes. , 2015, The Journal of chemical physics.

[4]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[5]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[6]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[7]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[8]  综合社会科学 World Community Grid , 2010 .

[9]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[10]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[11]  G. Hutchison,et al.  Efficient Computational Screening of Organic Polymer Photovoltaics. , 2013, The journal of physical chemistry letters.

[12]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[13]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[14]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[15]  Kwang-Hyun Cho,et al.  Encyclopedia of Systems Biology , 2013, Springer New York.

[16]  Randall Q. Snurr,et al.  High-Throughput Screening of Porous Crystalline Materials for Hydrogen Storage Capacity near Room Temperature , 2014 .

[17]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[18]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[19]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[20]  Mathew D. Halls,et al.  High-throughput quantum chemistry and virtual screening for OLED material components , 2013, Optics & Photonics - Photonic Devices + Applications.

[21]  Thomas A. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[22]  Alán Aspuru-Guzik,et al.  Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project , 2014 .

[23]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[24]  Jan M. L. Martin,et al.  W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data , 2011 .

[25]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[26]  Alán Aspuru-Guzik,et al.  Advances in molecular quantum chemistry contained in the Q-Chem 4 program package , 2014, Molecular Physics.

[27]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  Alán Aspuru-Guzik,et al.  What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery , 2015 .

[30]  Pavel Hobza,et al.  S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures , 2011, Journal of chemical theory and computation.

[31]  Aspuru-Guzik Alan The Harvard Organic Photovoltaics 2015 (HOPV) dataset: An experiment-theory calibration resource. , 2016 .

[32]  Yan Zhao,et al.  Density Functionals for Noncovalent Interaction Energies of Biological Importance. , 2007, Journal of chemical theory and computation.

[33]  Pavlo O. Dral,et al.  Quantum chemistry structures and properties of 134 kilo molecules , 2014, Scientific Data.

[34]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[35]  Yongwoo Shin,et al.  Structure and Optical Bandgap Relationship of π-Conjugated Systems , 2014, PloS one.

[36]  Noel M. O'Boyle,et al.  Computational Design and Selection of Optimal Organic Photovoltaic Materials , 2011 .

[37]  Gerhard Wolber,et al.  Balancing selectivity vs stability using molecular dynamics and umbrella sampling , 2014, Journal of Cheminformatics.

[38]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[39]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[40]  Amir Karton,et al.  W 4-11 : A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W 4 data , 2011 .

[41]  Mathew D. Halls,et al.  High-throughput quantum chemistry and virtual screening for lithium ion battery electrolyte additives , 2010 .

[42]  Paolo Tosco,et al.  Bringing the MMFF force field to the RDKit: implementation and validation , 2014, Journal of Cheminformatics.