Efficient search and hierarchical motion planning by dynamically maintaining single-source shortest paths trees

Hierarchical approximate cell decomposition is a popular approach to the geometric robot motion planning problem. In many cases, the search effort expended at a particular iteration can be greatly reduced by exploiting the work done during previous iterations. In this paper, we describe how this exploitation of past computation can be effected by the use of a dynamically maintained single-source shortest paths tree. We embed a single-source shortest paths tree in the connectivity graph of the approximate representation of the robot configuration space. This shortest paths tree records the most promising path to each vertex in the connectivity graph from the vertex corresponding to the robot's initial configuration. At each iteration, some vertex in the connectivity graph is replaced with a new set of vertices, corresponding to a more detailed representation of the configuration space. Our new, dynamic algorithm is then used to update the single-source shortest paths tree to reflect these changes to the underlying connectivity graph. >

[1]  Bernard Faverjon Object level programming of industrial robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[2]  Bowen Alpern,et al.  Incremental evaluation of computational circuits , 1990, SODA '90.

[3]  David Eppstein,et al.  Dynamic Euclidean minimum spanning trees and extrema of binary functions , 1995, Discret. Comput. Geom..

[4]  Donald Goldfarb,et al.  Efficient Shortest Path Simplex Algorithms , 1990, Oper. Res..

[5]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[6]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[7]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[8]  Chih-Chung Lin,et al.  On the dynamic shortest path problem , 1991 .

[9]  Jean-Claude Latombe,et al.  A Monte-Carlo algorithm for path planning with many degrees of freedom , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[10]  Alberto Marchetti-Spaccamela,et al.  Dynamic algorithms for shortest paths in planar graphs , 1991, Theor. Comput. Sci..

[11]  Vincent Hayward,et al.  Fast collision detection scheme by recursive decomposition of a manipulator workspace , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[12]  Hans Rohnert,et al.  A Dynamization of the All Pairs Least Cost Path Problem , 1985, STACS.

[13]  Dan Adler Switch-level simulation using dynamic graph algorithms , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Yong K. Hwang,et al.  Practical path planning among movable obstacles , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[15]  Larry S. Davis,et al.  Multiresolution path planning for mobile robots , 1986, IEEE J. Robotics Autom..

[16]  Greg N. Frederickson,et al.  Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning trees , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[17]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[18]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal object amidst polygonal obstacles , 1988, Geometry and Robotics.

[19]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[20]  Narendra Ahuja,et al.  Path planning using a potential field representation , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[21]  Jean-Claude Latombe,et al.  New heuristic algorithms for efficient hierarchical path planning , 1991, IEEE Trans. Robotics Autom..

[22]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Bernard Faverjon,et al.  Obstacle avoidance using an octree in the configuration space of a manipulator , 1984, ICRA.

[24]  Philip N. Klein,et al.  A Fully Dynamic Approximation Scheme for All-Pairs Shortest Paths in Planar Graphs , 1993, WADS.

[25]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[26]  Seth Hutchinson,et al.  Dealing With Unexpected Moving Obstacles By Integrating Potential Field Planning With Inverse Dynamics Control , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  A. Pan,et al.  On Finding and Updating Spanning Trees and Shortest Paths , 1975, SIAM J. Comput..

[28]  Hanan Samet,et al.  A hierarchical strategy for path planning among moving obstacles [mobile robot] , 1989, IEEE Trans. Robotics Autom..

[29]  Shimon Even,et al.  How to keep a dynamic distributive directed graph acyclic and yet grant all requests of edge additions , 1990, Proceedings of the 5th Jerusalem Conference on Information Technology, 1990. 'Next Decade in Information Technology'.

[30]  Ravindra K. Ahuja,et al.  The Scaling Network Simplex Algorithm , 1992, Oper. Res..

[31]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[32]  Giuseppe F. Italiano,et al.  Incremental algorithms for minimal length paths , 1991, SODA '90.

[33]  Dimitri P. Bertsekas,et al.  Dynamic Programming: Deterministic and Stochastic Models , 1987 .

[34]  B. Donald Motion Planning with Six Degrees of Freedom , 1984 .

[35]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[36]  Shimon Even,et al.  Updating distances in dynamic graphs , 1985 .

[37]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[38]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.