Adaptive tensegrity locomotion: Controlling a compliant icosahedron with symmetry-reduced reinforcement learning

Tensegrity robots, which are prototypical examples of hybrid soft–rigid robots, exhibit dynamical properties that provide ruggedness and adaptability. They also bring about, however, major challeng...

[1]  Sergey Levine,et al.  Deep reinforcement learning for tensegrity robot locomotion , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Sergey Levine,et al.  Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics , 2014, NIPS.

[3]  Kevin Schroeder,et al.  TANDEM: Tension Adjustable Network for Deploying Entry Membrane , 2018, Journal of Spacecraft and Rockets.

[4]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[5]  Sunil K. Agrawal,et al.  Spherical rolling robot: a design and motion planning studies , 2000, IEEE Trans. Robotics Autom..

[6]  Dario Floreano,et al.  A Soft Robot for Random Exploration of Terrestrial Environments , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Shinichi Hirai,et al.  Dynamic simulation of six-strut tensegrity robot rolling , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[8]  Kostas E. Bekris,et al.  Any-Axis Tensegrity Rolling via Symmetry-Reduced Reinforcement Learning , 2018, ISER.

[9]  Benjamin Schrauwen,et al.  Locomotion Without a Brain: Physical Reservoir Computing in Tensegrity Structures , 2013, Artificial Life.

[10]  Yuval Tassa,et al.  Synthesis and stabilization of complex behaviors through online trajectory optimization , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Soon-Jo Chung,et al.  A biomimetic robotic platform to study flight specializations of bats , 2017, Science Robotics.

[12]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[13]  Sergey Levine,et al.  Reset-free guided policy search: Efficient deep reinforcement learning with stochastic initial states , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Kyu-Jin Cho,et al.  Deformable-wheel robot based on soft material , 2013 .

[15]  R. Full,et al.  Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot , 2016, Proceedings of the National Academy of Sciences.

[16]  Yoshihiro Kawahara,et al.  Continuous Shape Changing Locomotion of 32-legged Spherical Robot , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[17]  Kostas E. Bekris,et al.  Efficient Model Identification for Tensegrity Locomotion , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[18]  Marc D. Killpack,et al.  A New Soft Robot Control Method: Using Model Predictive Control for a Pneumatically Actuated Humanoid , 2016, IEEE Robotics & Automation Magazine.

[19]  Marcin Andrychowicz,et al.  Hindsight Experience Replay , 2017, NIPS.

[20]  Hod Lipson,et al.  Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding , 2013, GECCO '13.

[21]  Hod Lipson,et al.  Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion , 2009, Journal of The Royal Society Interface.

[22]  Robert Babuska,et al.  Experience Selection in Deep Reinforcement Learning for Control , 2018, J. Mach. Learn. Res..

[23]  Alice M. Agogino,et al.  Multi-Cable Rolling Locomotion with Spherical Tensegrities Using Model Predictive Control and Deep Learning , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[24]  Shusheng Bi,et al.  A survey of bio-inspired compliant legged robot designs , 2012, Bioinspiration & biomimetics.

[25]  Alice M. Agogino,et al.  System design and locomotion of SUPERball, an untethered tensegrity robot , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Cosimo Della Santina,et al.  Dynamic control of soft robots interacting with the environment , 2018, 2018 IEEE International Conference on Soft Robotics (RoboSoft).

[27]  Alice M. Agogino,et al.  Tensegrity Robot Locomotion Under Limited Sensory Inputs via Deep Reinforcement Learning , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[28]  Klaus Zimmermann,et al.  Indoor locomotion experiments of a spherical mobile robot based on a tensegrity structure with curved compressed members , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[29]  Glen Berseth,et al.  Terrain-adaptive locomotion skills using deep reinforcement learning , 2016, ACM Trans. Graph..

[30]  Jeffrey M. Friesen,et al.  Steerable Locomotion Controller for Six-strut Icosahedral Tensegrity Robots , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[31]  Sergey Levine,et al.  Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations , 2017, Robotics: Science and Systems.

[32]  M Calisti,et al.  Fundamentals of soft robot locomotion , 2017, Journal of The Royal Society Interface.

[33]  Jeffrey M. Friesen,et al.  Design of SUPERball v2, a Compliant Tensegrity Robot for Absorbing Large Impacts , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  Suiping Zhou,et al.  An efficient locomotion strategy for six-strut tensegrity robots , 2017, 2017 13th IEEE International Conference on Control & Automation (ICCA).

[35]  Atil Iscen,et al.  Flop and roll: Learning robust goal-directed locomotion for a Tensegrity Robot , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Benjamin Schrauwen,et al.  Design and control of compliant tensegrity robots through simulation and hardware validation , 2014, Journal of The Royal Society Interface.

[37]  Alice M. Agogino,et al.  Robust learning of tensegrity robot control for locomotion through form-finding , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[38]  Alice M. Agogino,et al.  Hopping and rolling locomotion with spherical tensegrity robots , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[39]  Shinichi Hirai,et al.  Circular/Spherical Robots for Crawling and Jumping , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[40]  Jean-Baptiste Mouret,et al.  Adaptive and Resilient Soft Tensegrity Robots , 2017, Soft robotics.

[41]  Xiangzhi Wei,et al.  Design and locomotion analysis of a novel modular rolling robot , 2019, Mechanism and Machine Theory.

[42]  Oliver Brock,et al.  Soft Hands for Reliable Grasping Strategies , 2015 .

[43]  Ralf Der,et al.  Let it roll - Emerging Sensorimotor Coordination in a Spherical Robot , 2006 .

[44]  Sergey Levine,et al.  SOLAR: Deep Structured Latent Representations for Model-Based Reinforcement Learning , 2018, ArXiv.

[45]  Kostas E. Bekris,et al.  Discovering a Library of Rhythmic Gaits for Spherical Tensegrity Locomotion , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[46]  Yasuo Kuniyoshi,et al.  Environmental and Structural Effects on Physical Reservoir Computing with Tensegrity , 2018 .

[47]  LipsonHod,et al.  Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots , 2014 .

[48]  David Johan Christensen,et al.  A distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robots , 2013, Robotics Auton. Syst..

[49]  Vytas SunSpiral,et al.  Morphological design for controlled tensegrity quadruped locomotion , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[50]  Alice M. Agogino,et al.  Inclined surface locomotion strategies for spherical tensegrity robots , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[51]  SunSpiralVytas,et al.  Goal-Directed CPG-Based Control for Tensegrity Spines with Many Degrees of Freedom Traversing Irregular Terrain , 2015 .

[52]  Kostas E. Bekris,et al.  Symmetric Reduction of Tensegrity Rover Dynamics for Efficient Data-Driven Control , 2018, Earth and Space 2018.

[53]  Kostas E. Bekris,et al.  From Quasi-static to Kinodynamic Planning for Spherical Tensegrity Locomotion , 2017, ISRR.

[54]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[55]  Alice M. Agogino,et al.  Design of a spherical tensegrity robot for dynamic locomotion , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[56]  Daniela Rus,et al.  Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot , 2013, Bioinspiration & biomimetics.

[57]  Chandana Paul,et al.  Design and control of tensegrity robots for locomotion , 2006, IEEE Transactions on Robotics.

[58]  Helmut Hauser,et al.  Towards a theoretical foundation for morphological computation with compliant bodies , 2011, Biological Cybernetics.