Natural Motion for Energy Saving in Robotic and Mechatronic Systems

[1]  Paolo Fiorini,et al.  A Parallel-Elastic Actuator for a Torque-Controlled Back-Support Exoskeleton , 2018, IEEE Robotics and Automation Letters.

[2]  D. Lefeber,et al.  Series and Parallel Elastic Actuation: Impact of natural dynamics on power and energy consumption , 2016 .

[3]  Vladimir I. Babitsky,et al.  Adaptive high-speed resonant robot , 1996 .

[4]  Milan R. Lečić,et al.  Mathematical modeling of resonant linear vibratory conveyor with electromagnetic excitation: simulations and experimental results , 2017 .

[5]  Robert D. Gregg,et al.  Minimizing Energy Consumption and Peak Power of Series Elastic Actuators: A Convex Optimization Framework for Elastic Element Design , 2018, IEEE/ASME Transactions on Mechatronics.

[6]  Masafumi Okada,et al.  Optimal design of nonlinear springs in robot mechanism: simultaneous design of trajectory and spring force profiles , 2013, Adv. Robotics.

[7]  Giovanni Boschetti,et al.  A Picking Strategy for Circular Conveyor Tracking , 2016, 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA).

[8]  Paolo Gallina,et al.  Cable-Based Robotic Crane (CBRC): Design and Implementation of Overhead Traveling Cranes Based on Variable Radius Drums , 2018, IEEE Transactions on Robotics.

[9]  Majid Nili Ahmadabadi,et al.  Adaptation in Variable Parallel Compliance: Towards Energy Efficiency in Cyclic Tasks , 2017, IEEE/ASME Transactions on Mechatronics.

[10]  Bram Vanderborght,et al.  Online Reconfiguration of a Variable-Stiffness Actuator , 2018, IEEE/ASME Transactions on Mechatronics.

[11]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[12]  Werner Schiehlen,et al.  Minimum Control Energy in Multibody Systems Using Gravity and Springs , 2011 .

[13]  Giovanni Carabin,et al.  A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems , 2017, Robotics.

[14]  Sadao Kawamura,et al.  Inertia Adaptive Control Based on Resonance for Energy Saving of Mechanical Systems , 2012 .

[15]  Giovanni Carabin,et al.  Energy Expenditure Minimization for a Delta-2 Robot Through a Mixed Approach , 2019 .

[16]  Alin Albu-Schäffer,et al.  The DLR lightweight robot: design and control concepts for robots in human environments , 2007, Ind. Robot.

[17]  Guohui Tian,et al.  Conceptual Design and Analysis of Four Types of Variable Stiffness Actuators Based on Spring Pretension , 2015 .

[18]  Majid Nili Ahmadabadi,et al.  Adaptive Natural Oscillator to exploit natural dynamics for energy efficiency , 2017, Robotics Auton. Syst..

[19]  R. Ham,et al.  Compliant actuator designs , 2009, IEEE Robotics & Automation Magazine.

[20]  Sadao Kawamura,et al.  A stiffness adjustment mechanism maximally utilizing elastic energy of a linear spring for a robot joint , 2015, Adv. Robotics.

[21]  Chee-Meng Chew,et al.  Virtual Model Control: An Intuitive Approach for Bipedal Locomotion , 2001, Int. J. Robotics Res..

[22]  Oskar von Stryk,et al.  Analysis of system dynamic influences in robotic actuators with variable stiffness , 2014 .

[23]  N. G. Tsagarakis,et al.  A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS) , 2013, IEEE/ASME Transactions on Mechatronics.

[24]  Jörg Franke,et al.  Reducing the energy consumption of industrial robots in manufacturing systems , 2015 .

[25]  Majid Nili Ahmadabadi,et al.  Benefiting From Kinematic Redundancy Alongside Mono- and Biarticular Parallel Compliances for Energy Efficiency in Cyclic Tasks , 2017, IEEE Transactions on Robotics.

[26]  Bram Vanderborght,et al.  Variable Recruitment of Parallel Elastic Elements: Series–Parallel Elastic Actuators (SPEA) With Dephased Mutilated Gears , 2015, IEEE/ASME Transactions on Mechatronics.

[27]  Nevio Luigi Tagliamonte,et al.  Double actuation architectures for rendering variable impedance in compliant robots: A review , 2012 .

[28]  Sadao Kawamura,et al.  Realization of highly energy efficient pick-and-place tasks using resonance-based robot motion control , 2016, Adv. Robotics.

[29]  Manuel G. Catalano,et al.  Variable impedance actuators: A review , 2013, Robotics Auton. Syst..

[30]  Alessandro Gasparetto,et al.  A new path-constrained trajectory planning strategy for spray painting robots - rev.1 , 2018, The International Journal of Advanced Manufacturing Technology.

[31]  A. Ijspeert,et al.  Dynamic hebbian learning in adaptive frequency oscillators , 2006 .

[32]  Dario Richiedei,et al.  Optimal Design of Vibrating Systems Through Partial Eigenstructure Assignment , 2016 .

[33]  Renato Vidoni,et al.  In-Operation Structural Modification of Planetary Gear Sets Using Design Optimization Methods , 2018, Mechanism Design for Robotics.

[34]  Bram Vanderborght,et al.  Series and Parallel Elastic Actuation: Influence of Operating Positions on Design and Control , 2017, IEEE/ASME Transactions on Mechatronics.

[35]  A. Deshpande,et al.  Design of Nonlinear Rotational Stiffness Using a Noncircular Pulley-Spring Mechanism , 2014 .

[36]  Sadao Kawamura,et al.  Motion Control With Stiffness Adaptation for Torque Minimization in Multijoint Robots , 2014, IEEE Transactions on Robotics.

[37]  Wolfgang Seemann,et al.  Energy efficient bipedal robots walking in resonance , 2014 .

[38]  Sunil K. Agrawal,et al.  Design of gravity balancing leg orthosis using non-zero free length springs , 2005 .

[39]  David D. Morrison,et al.  Multiple shooting method for two-point boundary value problems , 1962, CACM.

[40]  Alberto Trevisani,et al.  Reduced-Order Observers for Nonlinear State Estimation in Flexible Multibody Systems , 2018, Shock and Vibration.

[41]  Jun-Yeob Song,et al.  Design of highly uniform spool and bar horns for ultrasonic bonding , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[42]  Majid Nili Ahmadabadi,et al.  Compliance and frequency optimization for energy efficiency in cyclic tasks , 2017, Robotica.

[43]  Bram Vanderborght,et al.  MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot , 2007, Robotics Auton. Syst..

[44]  S. Sujatha,et al.  Approximate spring balancing of linkages to reduce actuator requirements , 2015 .

[45]  Bram Vanderborght,et al.  Overview of the Lucy Project: Dynamic Stabilization of a Biped Powered by Pneumatic Artificial Muscles , 2008, Adv. Robotics.

[46]  Nikos G. Tsagarakis,et al.  Development and Control of a Compliant Asymmetric Antagonistic Actuator for Energy Efficient Mobility , 2016, IEEE/ASME Transactions on Mechatronics.

[47]  Alberto Trevisani,et al.  Mode selection for reduced order modeling of mechanical systems excited at resonance , 2016 .

[48]  Clément Gosselin,et al.  Static balancing of spatial three-degree-of-freedom parallel mechanisms , 1999 .

[49]  Sébastien Briot,et al.  Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators , 2008 .

[50]  Giorgio Grioli,et al.  Variable Stiffness Actuators: Review on Design and Components , 2016, IEEE/ASME Transactions on Mechatronics.

[51]  Sunil K. Agrawal,et al.  Reactionless space and ground robots: novel designs and concept studies , 2004 .

[52]  Fumiya Iida,et al.  Bipedal walking and running with spring-like biarticular muscles. , 2008, Journal of biomechanics.

[53]  Sadao Kawamura,et al.  Proposal of an Energy Saving Control Method for SCARA Robots , 2012, J. Robotics Mechatronics.