How to Factor N 1 and N 2 When $p_1=p_2 \bmod 2^t$

Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli. Suppose that p1 = p2 mod 2 t for some t, and q1 and q2 are α bit primes. Then May and Ritzenhofen showed that N1 and N2 can be factored in quadratic time if t ≥ 2α+ 3. In this paper, we improve this lower bound on t. Namely we prove that N1 and N2 can be factored in quadratic time if t ≥ 2α+ 1. Further our simulation result shows that our bound is tight as far as the factoring method of May and Ritzenhofen is used.

[1]  H. Minkowski,et al.  Geometrie der Zahlen , 1896 .

[2]  Don Coppersmith,et al.  Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known , 1996, EUROCRYPT.

[3]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[4]  Burton S. Kaliski Advances in Cryptology - CRYPTO '97 , 1997 .

[5]  Carl Pomerance,et al.  The Quadratic Sieve Factoring Algorithm , 1985, EUROCRYPT.

[6]  Aggelos Kiayias,et al.  BiTR: Built-in Tamper Resilience , 2011, IACR Cryptol. ePrint Arch..

[7]  Adi Shamir,et al.  Efficient Factoring Based on Partial Information , 1985, EUROCRYPT.

[8]  Stanislaw Jarecki,et al.  Public Key Cryptography – PKC 2009 , 2009, Lecture Notes in Computer Science.

[9]  Rainer A. Rueppel Advances in Cryptology — EUROCRYPT’ 92 , 2001, Lecture Notes in Computer Science.

[10]  Ueli Maurer,et al.  Advances in Cryptology — EUROCRYPT ’96 , 2001, Lecture Notes in Computer Science.

[11]  Marc Joye,et al.  Topics in Cryptology — CT-RSA 2003 , 2003 .

[12]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[13]  Alexander May,et al.  Implicit Factoring: On Polynomial Time Factoring Given Only an Implicit Hint , 2009, Public Key Cryptography.

[14]  Steven D. Galbraith,et al.  Mathematics of Public Key Cryptography , 2012 .

[15]  A. K. Lenstra,et al.  The Development of the Number Field Sieve , 1993 .

[16]  Santanu Sarkar,et al.  Approximate Integer Common Divisor Problem Relates to Implicit Factorization , 2011, IEEE Transactions on Information Theory.

[17]  Moti Yung,et al.  The Prevalence of Kleptographic Attacks on Discrete-Log Based Cryptosystems , 1997, CRYPTO.

[18]  Ueli Maurer,et al.  Factoring with an Oracle , 1992, EUROCRYPT.

[19]  Claude Crépeau,et al.  Simple Backdoors for RSA Key Generation , 2003, CT-RSA.

[20]  Franz Pichler,et al.  Advances in Cryptology — EUROCRYPT’ 85 , 2000, Lecture Notes in Computer Science.