A reactive algorithm for safe navigation of a wheeled mobile robot among moving obstacles

We present a simple biologically inspired strategy for navigation a unicycle-like robot towards a target while avoiding collisions with moving obstacles. Mathematically rigorous analysis of the proposed approach is provided. The convergence and performance of the algorithm is demonstrated via extensive computer simulations.

[1]  George K. Papakonstantinou,et al.  Global path planning for autonomous qualitative navigation , 1996, Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence.

[2]  Zvi Shiller,et al.  Online Suboptimal Obstacle Avoidance , 2000, Int. J. Robotics Res..

[3]  S. Arimoto,et al.  Path Planning Using a Tangent Graph for Mobile Robots Among Polygonal and Curved Obstacles , 1992 .

[4]  Ehud Rivlin,et al.  Sensory-based motion planning with global proofs , 1997, IEEE Trans. Robotics Autom..

[5]  Marion A. Eppler,et al.  Development of Visually Guided Locomotion , 1998 .

[6]  David N. Lee Guiding Movement by Coupling Taus , 1998 .

[7]  Akira Inoue,et al.  An obstacle avoidance method for two wheeled mobile robot , 2007, 2007 IEEE International Conference on Networking, Sensing and Control.

[8]  Maarouf Saad,et al.  A Novel Approach for Mobile Robot Navigation with Dynamic Obstacles Avoidance , 2005, J. Intell. Robotic Syst..

[9]  Christian Laugier,et al.  Navigation Among Moving Obstacles Using the NLVO: Principles and Applications to Intelligent Vehicles , 2005, Auton. Robots.

[10]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[11]  Andrey V. Savkin,et al.  Equiangular navigation and guidance of a wheeled mobile robot based on range-only measurements , 2010, Robotics Auton. Syst..

[12]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[13]  Ehud Rivlin,et al.  TangentBug: A Range-Sensor-Based Navigation Algorithm , 1998, Int. J. Robotics Res..

[14]  Andrey V. Savkin,et al.  Real-time navigation of mobile robots in problems of border patrolling and avoiding collisions with moving and deforming obstacles , 2012, Robotics Auton. Syst..

[15]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[16]  Andrey V. Savkin,et al.  A method for guidance and control of an autonomous vehicle in problems of border patrolling and obstacle avoidance , 2011, Autom..

[17]  Luis Montano,et al.  A Robocentric Motion Planner for Dynamic Environments Using the Velocity Space , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  G. Swaminathan Robot Motion Planning , 2006 .

[19]  Hajime Asama,et al.  Inevitable collision states — a step towards safer robots? , 2004, Adv. Robotics.

[20]  J. Minguez,et al.  ROBOT NAVIGATION IN VERY COMPLEX, DENSE, AND CLUTTERED INDOOR/OUTDOOR ENVIRONMENTS , 2002 .

[21]  Reid G. Simmons,et al.  The lane-curvature method for local obstacle avoidance , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[22]  Lionel Lapierre,et al.  Combined Path-following and Obstacle Avoidance Control of a Wheeled Robot , 2007, Int. J. Robotics Res..

[23]  Andrey V. Savkin,et al.  Range-only measurements based target following for wheeled mobile robots , 2011, Autom..

[24]  Andrey V. Savkin,et al.  A biologically inspired method for robot navigation in a cluttered environment , 2009, Robotica.

[25]  Debasish Ghose,et al.  Obstacle avoidance in a dynamic environment: a collision cone approach , 1998, IEEE Trans. Syst. Man Cybern. Part A.