Beyond Catmull–Clark? A Survey of Advances in Subdivision Surface Methods
暂无分享,去创建一个
[1] Peter Schröder,et al. Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..
[2] Denis Zorin,et al. Evaluation of piecewise smooth subdivision surfaces , 2002, The Visual Computer.
[3] Charles T. Loop,et al. G2 Tensor Product Splines over Extraordinary Vertices , 2008, Comput. Graph. Forum.
[4] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[5] Ashish Myles,et al. Bi-3 C 2 polar subdivision , 2009, SIGGRAPH 2009.
[6] Jörg Peters,et al. Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets , 2008, Comput. Graph. Forum.
[7] F. Cheng,et al. Robust and Error Controllable Boolean Operations on Free-Form Solids Represented by Catmull-Clark Subdivision Surfaces , 2007 .
[8] Jörg Peters,et al. Shape characterization of subdivision surfaces--basic principles , 2004, Comput. Aided Geom. Des..
[9] Peter Schröder,et al. Trimming for subdivision surfaces , 2001, Comput. Aided Geom. Des..
[10] Georg Umlauf,et al. Symmetry of shape charts , 2008, Comput. Aided Geom. Des..
[11] Gang Chen,et al. Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches , 2006, Computer Graphics International.
[12] Charles T. Loop,et al. Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.
[13] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[14] Xiao-Ming Zeng,et al. Computational formula of depth for Catmull-Clark subdivision surfaces , 2006 .
[15] Ulrich Reif,et al. Degree estimates for Ck‐piecewise polynomial subdivision surfaces , 1999, Adv. Comput. Math..
[16] Zhangjin Huang,et al. Improved error estimate for extraordinary Catmull–Clark subdivision surface patches , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.
[17] Di Jiang,et al. Robustness of Boolean Operations on Subdivision-Surface Models , 2009, Numerical Validation in Current Hardware Architectures.
[18] Peter Schröder,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..
[19] Ulf Labsik,et al. Interpolatory √3‐Subdivision , 2000 .
[20] Gerd Häusler,et al. A Non-Linear Subdivision Scheme for Triangle Meshes , 2000, VMV.
[21] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[22] Jörg Peters,et al. Adjustable speed surface subdivision , 2009, Comput. Aided Geom. Des..
[23] Andrés Iglesias,et al. Computational Methods for Geometric Processing. Applications to Industry , 2001, International Conference on Computational Science.
[24] Jörg Peters,et al. Shape characterization of subdivision surfaces--case studies , 2004, Comput. Aided Geom. Des..
[25] David Levin,et al. C2 subdivision over triangulations with one extraordinary point , 2006, Comput. Aided Geom. Des..
[26] Georg Umlauf,et al. Loop subdivision with curvature control , 2006, SGP '06.
[27] Nira Dyn,et al. Interpolatory convexity-preserving subdivision schemes for curves and surfaces , 1992, Comput. Aided Des..
[28] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[29] Jörg Peters,et al. Efficient substitutes for subdivision surfaces , 2009, SIGGRAPH '09.
[30] Tony DeRose,et al. Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.
[31] Denis Z orin. Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .
[32] Lei He,et al. Parameterizing subdivision surfaces , 2010, ACM Trans. Graph..
[33] Henning Biermann,et al. Approximate Boolean operations on free-form solids , 2001, SIGGRAPH.
[34] Adi Levin. Modified subdivision surfaces with continuous curvature , 2006, ACM Trans. Graph..
[35] Henning Biermann,et al. Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.
[36] Scott David Schaefer. A factored, interpolatory subdivision scheme for surfaces of revolution , 2003 .
[37] Joe Warren,et al. Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .
[38] Charles T. Loop,et al. Approximating subdivision surfaces with Gregory patches for hardware tessellation , 2009, ACM Trans. Graph..
[39] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[40] U. Reif. TURBS—Topologically Unrestricted Rational B-Splines , 1998 .
[41] Jun-Hai Yong,et al. Subdivision Depth Computation for Catmull-Clark Subdivision Surfaces , 2006 .
[42] Charles T. Loop. Bounded curvature triangle mesh subdivision with the convex hull property , 2002, The Visual Computer.
[43] Weiyin Ma,et al. A Method for Constructing Interpolatory Subdivision Schemes and Blending Subdivisions , 2007, Comput. Graph. Forum.
[44] Jörg Peters,et al. Surfaces with polar structure , 2007, Computing.
[45] G. Umlauf. Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .
[46] Bin Han,et al. Classification and Construction of Bivariate Subdivision Schemes , 2002 .
[47] Marc Alexa,et al. Subdivision shading , 2008, SIGGRAPH Asia '08.
[48] Jörg Peters,et al. Curved PN triangles , 2001, I3D '01.
[49] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[50] Sw Sjoerd Rienstra,et al. Thin layer flow along arbitrary curved surfaces , 1995 .
[51] Neil A. Dodgson,et al. A generative classification of mesh refinement rules with lattice transformations , 2004, Comput. Aided Geom. Des..
[52] U. Reif. A degree estimate for subdivision surfaces of higher regularity , 1996 .
[53] J. Peters,et al. Smoothness, Fairness and the Need for Better Multi-sided Patches , 2022 .
[54] Tony DeRose,et al. Subdivision surfaces in character animation , 1998, SIGGRAPH.
[55] Roberto Scopigno,et al. Computer Graphics forum , 2003, Computer Graphics Forum.
[56] Eitan Grinspun,et al. Normal bounds for subdivision-surface interference detection , 2001, Proceedings Visualization, 2001. VIS '01..
[57] Jörg Peters,et al. An Introduction to Guided and Polar Surfacing , 2008, MMCS.
[58] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[59] F. Holt. Toward a curvature-continuous stationary subdivision algorithm , 1996 .
[60] Neil A. Dodgson,et al. Curvature behaviours at extraordinary points of subdivision surfaces , 2003, Comput. Aided Des..
[61] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[62] Jörg Peters,et al. The distance of a subdivision surface to its control polyhedron , 2009, J. Approx. Theory.
[63] Adi Levin. Combined subdivision schemes for the design of surfaces satisfying boundary conditions , 1999, Comput. Aided Geom. Des..
[64] Jörg Peters,et al. The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.
[65] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[66] Luiz Velho,et al. 4-8 Subdivision , 2001, Comput. Aided Geom. Des..
[67] Jörg Peters,et al. Patching Catmull-Clark meshes , 2000, SIGGRAPH.
[68] Neil A. Dodgson,et al. Preconditions on geometrically sensitive subdivision schemes , 2007 .
[69] Kari Pulli,et al. Fast rendering of subdivision surfaces , 1996, SIGGRAPH '96.
[70] Jörg Peters,et al. GPU smoothing of quad meshes , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.
[71] John N. Tsitsiklis,et al. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..
[72] Neil A. Dodgson,et al. On the support of recursive subdivision , 2004, ACM Trans. Graph..
[73] Leif Kobbelt,et al. Subdivision scheme tuning around extraordinary vertices , 2004, Comput. Aided Geom. Des..
[74] Faramarz F. Samavati,et al. Fast Intersections for Subdivision Surfaces , 2006, ICCSA.
[75] Jos Stam,et al. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..
[76] Hongwei Lin,et al. Watertight trimmed NURBS , 2008, ACM Trans. Graph..
[77] Zhangjin Huang,et al. Distance between a Catmull-Clark subdivision surface and its limit mesh , 2007, Symposium on Solid and Physical Modeling.
[78] J. Warren,et al. Subdivision methods for geometric design , 1995 .
[79] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[80] Jörg Peters,et al. Bicubic polar subdivision , 2007, TOGS.
[81] Scott Schaefer,et al. Exact evaluation of limits and tangents for non-polynomial subdivision schemes , 2008, Comput. Aided Geom. Des..
[82] Ulrich Reif. An Appropriate Geometric Invariant for the C 2-Analysis of Subdivision Surfaces , 2007, IMA Conference on the Mathematics of Surfaces.
[83] Malcolm Sabin,et al. Recent Progress in Subdivision: a Survey , 2005, Advances in Multiresolution for Geometric Modelling.
[84] Scott Schaefer,et al. Exact Evaluation of Non-Polynomial Subdivision Schemes at Rational Parameter Values , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).
[85] Ulrich Reif,et al. Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..
[86] Joe D. Warren,et al. A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..
[87] Denis Zorin,et al. Constructing curvature-continuous surfaces by blending , 2006, SGP '06.
[88] Jörg Peters,et al. Guided spline surfaces , 2009, Comput. Aided Geom. Des..
[89] Jörg Peters,et al. Combining 4- and 3-direction subdivision , 2004, ACM Trans. Graph..
[90] M. A. Sabin,et al. Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.
[91] Jörg Peters,et al. Computing curvature bounds for bounded curvature subdivision , 2001, Comput. Aided Geom. Des..
[92] Jörg Peters,et al. A realtime GPU subdivision kernel , 2005, SIGGRAPH 2005.
[93] Neil A. Dodgson,et al. Advances in Multiresolution for Geometric Modelling , 2005 .
[94] L. Piegl,et al. Curve and surface constructions using rational B-splines , 1987 .
[95] D. Zorin,et al. 4-8 Subdivision , 2001 .
[96] Malcolm A. Sabin,et al. Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.
[97] Hugues Hoppe,et al. Displaced subdivision surfaces , 2000, SIGGRAPH.
[98] Jason L. Mitchell,et al. Real-time creased approximate subdivision surfaces , 2009, I3D '09.
[99] Malcolm A. Sabin,et al. Artifacts in recursive subdivision surfaces , 2003 .
[100] Denis Zorin,et al. Differentiable parameterization of Catmull-Clark subdivision surfaces , 2004, SGP '04.
[101] Jiansong Deng,et al. A bound on the approximation of a Catmull-Clark subdivision surface by its limit mesh , 2008, Comput. Aided Geom. Des..
[102] Zhangjin Huang,et al. Bounding the Distance between a Loop Subdivision Surface and Its Limit Mesh , 2008, GMP.
[103] Matt Pharr,et al. Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation , 2005 .
[104] D. Levin,et al. Analysis of quasi-uniform subdivision , 2003 .
[105] Jörg Peters,et al. Concentric tessellation maps and curvature continuous guided surfaces , 2007, Comput. Aided Geom. Des..
[106] Leif Kobbelt,et al. √3-subdivision , 2000, SIGGRAPH.
[107] Ergun Akleman,et al. Modeling subdivision control meshes for creating cartoon faces , 2001, Proceedings International Conference on Shape Modeling and Applications.
[108] D. Zorin,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .
[109] Denis Zorin,et al. A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..
[110] Xunnian Yang,et al. Surface interpolation of meshes by geometric subdivision , 2005, Comput. Aided Des..
[111] Neil A. Dodgson,et al. Artifact analysis on triangular box-splines and subdivision surfaces defined by triangular polyhedra , 2011, Comput. Aided Geom. Des..
[112] Takashi Maekawa,et al. Interpolation by geometric algorithm , 2007, Comput. Aided Des..
[113] Neil A. Dodgson,et al. Artifact analysis on B-splines, box-splines and other surfaces defined by quadrilateral polyhedra , 2011, Comput. Aided Geom. Des..
[114] Charles T. Loop,et al. Approximating Catmull-Clark subdivision surfaces with bicubic patches , 2008, TOGS.
[115] André R. Foisy,et al. Arbitrary-Degree Subdivision with Creases and Attributes , 2004, J. Graphics, GPU, & Game Tools.
[116] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[117] Dieter W. Fellner,et al. Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces , 2006, TOGS.
[118] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[119] Scott Schaefer,et al. On C2 triangle/quad subdivision , 2005, TOGS.
[120] Sebti Foufou,et al. A Graph Based Algorithm for Intersection of Subdivision Surfaces , 2003, ICCSA.
[121] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[122] Jörg Peters,et al. Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.
[123] Malcolm A. Sabin,et al. Analysis and Design of Univariate Subdivision Schemes , 2010, Geometry and Computing.
[124] M. Sabin,et al. NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.
[125] Nira Dyn,et al. Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..
[126] Gang Chen,et al. Matrix Based Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches , 2006, GMP.
[127] Hans Hagen,et al. Dinus: Double insertion, nonuniform, stationary subdivision surfaces , 2010, TOGS.
[128] Jörg Peters,et al. A realtime GPU subdivision kernel , 2005, SIGGRAPH '05.
[129] Kaihuai Qin,et al. Eigenanalysis and continuity of non-uniform Doo-Sabin surfaces , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).
[130] Hartmut Prautzsch,et al. A G2-Subdivision Algorithm , 1996, Geometric Modelling.
[131] Jörg Peters,et al. GPU conversion of quad meshes to smooth surfaces , 2008, SPM '08.
[132] Peter Schröder,et al. Rapid evaluation of Catmull-Clark subdivision surfaces , 2002, Web3D '02.
[133] Jörg Peters,et al. Interference Detection for Subdivision Surfaces , 2004, Comput. Graph. Forum.
[134] Scott Schaefer,et al. Exact Evaluation of Non-Polynomial Subdivision Schemes at Rational Parameter Values , 2007 .
[135] Jörg Peters,et al. Bi-3 C2 polar subdivision , 2009, ACM Trans. Graph..
[136] B. Mourrain,et al. A Subdivision Arrangement Algorithm for Semi-Algebraic Curves: An Overview , 2007 .
[137] Hartmut Prautzsch,et al. Freeform splines , 1997, Computer Aided Geometric Design.
[138] Maxim Kazakov,et al. Catmull-Clark subdivision for geometry shaders , 2007, AFRIGRAPH '07.
[139] Neil A. Dodgson,et al. Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices , 2006, Comput. Graph. Forum.
[140] Jörg Peters,et al. On the curvature of guided surfaces , 2008, Comput. Aided Geom. Des..
[141] Qi Chen,et al. Analyzing midpoint subdivision , 2009, Comput. Aided Geom. Des..
[142] Thomas J. Cashman,et al. NURBS-compatible subdivision surfaces , 2011 .
[143] John Hart,et al. ACM Transactions on Graphics , 2004, SIGGRAPH 2004.
[144] Charles T. Loop. Second order smoothness over extraordinary vertices , 2004, SGP '04.