Beyond Catmull–Clark? A Survey of Advances in Subdivision Surface Methods

Subdivision surfaces allow smooth free‐form surface modelling without topological constraints. They have become a fundamental representation for smooth geometry, particularly in the animation and entertainment industries. This survey summarizes research on subdivision surfaces over the last 15 years in three major strands: analysis, integration into existing systems and the development of new schemes. We also examine the reason for the low adoption of new schemes with theoretical advantages, explain why Catmull–Clark surfaces have become a de facto standard in geometric modelling, and conclude by identifying directions for future research.

[1]  Peter Schröder,et al.  Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..

[2]  Denis Zorin,et al.  Evaluation of piecewise smooth subdivision surfaces , 2002, The Visual Computer.

[3]  Charles T. Loop,et al.  G2 Tensor Product Splines over Extraordinary Vertices , 2008, Comput. Graph. Forum.

[4]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[5]  Ashish Myles,et al.  Bi-3 C 2 polar subdivision , 2009, SIGGRAPH 2009.

[6]  Jörg Peters,et al.  Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets , 2008, Comput. Graph. Forum.

[7]  F. Cheng,et al.  Robust and Error Controllable Boolean Operations on Free-Form Solids Represented by Catmull-Clark Subdivision Surfaces , 2007 .

[8]  Jörg Peters,et al.  Shape characterization of subdivision surfaces--basic principles , 2004, Comput. Aided Geom. Des..

[9]  Peter Schröder,et al.  Trimming for subdivision surfaces , 2001, Comput. Aided Geom. Des..

[10]  Georg Umlauf,et al.  Symmetry of shape charts , 2008, Comput. Aided Geom. Des..

[11]  Gang Chen,et al.  Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches , 2006, Computer Graphics International.

[12]  Charles T. Loop,et al.  Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.

[13]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[14]  Xiao-Ming Zeng,et al.  Computational formula of depth for Catmull-Clark subdivision surfaces , 2006 .

[15]  Ulrich Reif,et al.  Degree estimates for Ck‐piecewise polynomial subdivision surfaces , 1999, Adv. Comput. Math..

[16]  Zhangjin Huang,et al.  Improved error estimate for extraordinary Catmull–Clark subdivision surface patches , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[17]  Di Jiang,et al.  Robustness of Boolean Operations on Subdivision-Surface Models , 2009, Numerical Validation in Current Hardware Architectures.

[18]  Peter Schröder,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..

[19]  Ulf Labsik,et al.  Interpolatory √3‐Subdivision , 2000 .

[20]  Gerd Häusler,et al.  A Non-Linear Subdivision Scheme for Triangle Meshes , 2000, VMV.

[21]  Hartmut Prautzsch,et al.  Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..

[22]  Jörg Peters,et al.  Adjustable speed surface subdivision , 2009, Comput. Aided Geom. Des..

[23]  Andrés Iglesias,et al.  Computational Methods for Geometric Processing. Applications to Industry , 2001, International Conference on Computational Science.

[24]  Jörg Peters,et al.  Shape characterization of subdivision surfaces--case studies , 2004, Comput. Aided Geom. Des..

[25]  David Levin,et al.  C2 subdivision over triangulations with one extraordinary point , 2006, Comput. Aided Geom. Des..

[26]  Georg Umlauf,et al.  Loop subdivision with curvature control , 2006, SGP '06.

[27]  Nira Dyn,et al.  Interpolatory convexity-preserving subdivision schemes for curves and surfaces , 1992, Comput. Aided Des..

[28]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[29]  Jörg Peters,et al.  Efficient substitutes for subdivision surfaces , 2009, SIGGRAPH '09.

[30]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[31]  Denis Z orin Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .

[32]  Lei He,et al.  Parameterizing subdivision surfaces , 2010, ACM Trans. Graph..

[33]  Henning Biermann,et al.  Approximate Boolean operations on free-form solids , 2001, SIGGRAPH.

[34]  Adi Levin Modified subdivision surfaces with continuous curvature , 2006, ACM Trans. Graph..

[35]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[36]  Scott David Schaefer A factored, interpolatory subdivision scheme for surfaces of revolution , 2003 .

[37]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[38]  Charles T. Loop,et al.  Approximating subdivision surfaces with Gregory patches for hardware tessellation , 2009, ACM Trans. Graph..

[39]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[40]  U. Reif TURBS—Topologically Unrestricted Rational B-Splines , 1998 .

[41]  Jun-Hai Yong,et al.  Subdivision Depth Computation for Catmull-Clark Subdivision Surfaces , 2006 .

[42]  Charles T. Loop Bounded curvature triangle mesh subdivision with the convex hull property , 2002, The Visual Computer.

[43]  Weiyin Ma,et al.  A Method for Constructing Interpolatory Subdivision Schemes and Blending Subdivisions , 2007, Comput. Graph. Forum.

[44]  Jörg Peters,et al.  Surfaces with polar structure , 2007, Computing.

[45]  G. Umlauf Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .

[46]  Bin Han,et al.  Classification and Construction of Bivariate Subdivision Schemes , 2002 .

[47]  Marc Alexa,et al.  Subdivision shading , 2008, SIGGRAPH Asia '08.

[48]  Jörg Peters,et al.  Curved PN triangles , 2001, I3D '01.

[49]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[50]  Sw Sjoerd Rienstra,et al.  Thin layer flow along arbitrary curved surfaces , 1995 .

[51]  Neil A. Dodgson,et al.  A generative classification of mesh refinement rules with lattice transformations , 2004, Comput. Aided Geom. Des..

[52]  U. Reif A degree estimate for subdivision surfaces of higher regularity , 1996 .

[53]  J. Peters,et al.  Smoothness, Fairness and the Need for Better Multi-sided Patches , 2022 .

[54]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[55]  Roberto Scopigno,et al.  Computer Graphics forum , 2003, Computer Graphics Forum.

[56]  Eitan Grinspun,et al.  Normal bounds for subdivision-surface interference detection , 2001, Proceedings Visualization, 2001. VIS '01..

[57]  Jörg Peters,et al.  An Introduction to Guided and Polar Surfacing , 2008, MMCS.

[58]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[59]  F. Holt Toward a curvature-continuous stationary subdivision algorithm , 1996 .

[60]  Neil A. Dodgson,et al.  Curvature behaviours at extraordinary points of subdivision surfaces , 2003, Comput. Aided Des..

[61]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[62]  Jörg Peters,et al.  The distance of a subdivision surface to its control polyhedron , 2009, J. Approx. Theory.

[63]  Adi Levin Combined subdivision schemes for the design of surfaces satisfying boundary conditions , 1999, Comput. Aided Geom. Des..

[64]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[65]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[66]  Luiz Velho,et al.  4-8 Subdivision , 2001, Comput. Aided Geom. Des..

[67]  Jörg Peters,et al.  Patching Catmull-Clark meshes , 2000, SIGGRAPH.

[68]  Neil A. Dodgson,et al.  Preconditions on geometrically sensitive subdivision schemes , 2007 .

[69]  Kari Pulli,et al.  Fast rendering of subdivision surfaces , 1996, SIGGRAPH '96.

[70]  Jörg Peters,et al.  GPU smoothing of quad meshes , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[71]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[72]  Neil A. Dodgson,et al.  On the support of recursive subdivision , 2004, ACM Trans. Graph..

[73]  Leif Kobbelt,et al.  Subdivision scheme tuning around extraordinary vertices , 2004, Comput. Aided Geom. Des..

[74]  Faramarz F. Samavati,et al.  Fast Intersections for Subdivision Surfaces , 2006, ICCSA.

[75]  Jos Stam,et al.  On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..

[76]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[77]  Zhangjin Huang,et al.  Distance between a Catmull-Clark subdivision surface and its limit mesh , 2007, Symposium on Solid and Physical Modeling.

[78]  J. Warren,et al.  Subdivision methods for geometric design , 1995 .

[79]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[80]  Jörg Peters,et al.  Bicubic polar subdivision , 2007, TOGS.

[81]  Scott Schaefer,et al.  Exact evaluation of limits and tangents for non-polynomial subdivision schemes , 2008, Comput. Aided Geom. Des..

[82]  Ulrich Reif An Appropriate Geometric Invariant for the C 2-Analysis of Subdivision Surfaces , 2007, IMA Conference on the Mathematics of Surfaces.

[83]  Malcolm Sabin,et al.  Recent Progress in Subdivision: a Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[84]  Scott Schaefer,et al.  Exact Evaluation of Non-Polynomial Subdivision Schemes at Rational Parameter Values , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[85]  Ulrich Reif,et al.  Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..

[86]  Joe D. Warren,et al.  A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..

[87]  Denis Zorin,et al.  Constructing curvature-continuous surfaces by blending , 2006, SGP '06.

[88]  Jörg Peters,et al.  Guided spline surfaces , 2009, Comput. Aided Geom. Des..

[89]  Jörg Peters,et al.  Combining 4- and 3-direction subdivision , 2004, ACM Trans. Graph..

[90]  M. A. Sabin,et al.  Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.

[91]  Jörg Peters,et al.  Computing curvature bounds for bounded curvature subdivision , 2001, Comput. Aided Geom. Des..

[92]  Jörg Peters,et al.  A realtime GPU subdivision kernel , 2005, SIGGRAPH 2005.

[93]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[94]  L. Piegl,et al.  Curve and surface constructions using rational B-splines , 1987 .

[95]  D. Zorin,et al.  4-8 Subdivision , 2001 .

[96]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[97]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[98]  Jason L. Mitchell,et al.  Real-time creased approximate subdivision surfaces , 2009, I3D '09.

[99]  Malcolm A. Sabin,et al.  Artifacts in recursive subdivision surfaces , 2003 .

[100]  Denis Zorin,et al.  Differentiable parameterization of Catmull-Clark subdivision surfaces , 2004, SGP '04.

[101]  Jiansong Deng,et al.  A bound on the approximation of a Catmull-Clark subdivision surface by its limit mesh , 2008, Comput. Aided Geom. Des..

[102]  Zhangjin Huang,et al.  Bounding the Distance between a Loop Subdivision Surface and Its Limit Mesh , 2008, GMP.

[103]  Matt Pharr,et al.  Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation , 2005 .

[104]  D. Levin,et al.  Analysis of quasi-uniform subdivision , 2003 .

[105]  Jörg Peters,et al.  Concentric tessellation maps and curvature continuous guided surfaces , 2007, Comput. Aided Geom. Des..

[106]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[107]  Ergun Akleman,et al.  Modeling subdivision control meshes for creating cartoon faces , 2001, Proceedings International Conference on Shape Modeling and Applications.

[108]  D. Zorin,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .

[109]  Denis Zorin,et al.  A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..

[110]  Xunnian Yang,et al.  Surface interpolation of meshes by geometric subdivision , 2005, Comput. Aided Des..

[111]  Neil A. Dodgson,et al.  Artifact analysis on triangular box-splines and subdivision surfaces defined by triangular polyhedra , 2011, Comput. Aided Geom. Des..

[112]  Takashi Maekawa,et al.  Interpolation by geometric algorithm , 2007, Comput. Aided Des..

[113]  Neil A. Dodgson,et al.  Artifact analysis on B-splines, box-splines and other surfaces defined by quadrilateral polyhedra , 2011, Comput. Aided Geom. Des..

[114]  Charles T. Loop,et al.  Approximating Catmull-Clark subdivision surfaces with bicubic patches , 2008, TOGS.

[115]  André R. Foisy,et al.  Arbitrary-Degree Subdivision with Creases and Attributes , 2004, J. Graphics, GPU, & Game Tools.

[116]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[117]  Dieter W. Fellner,et al.  Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces , 2006, TOGS.

[118]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[119]  Scott Schaefer,et al.  On C2 triangle/quad subdivision , 2005, TOGS.

[120]  Sebti Foufou,et al.  A Graph Based Algorithm for Intersection of Subdivision Surfaces , 2003, ICCSA.

[121]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[122]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[123]  Malcolm A. Sabin,et al.  Analysis and Design of Univariate Subdivision Schemes , 2010, Geometry and Computing.

[124]  M. Sabin,et al.  NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.

[125]  Nira Dyn,et al.  Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..

[126]  Gang Chen,et al.  Matrix Based Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches , 2006, GMP.

[127]  Hans Hagen,et al.  Dinus: Double insertion, nonuniform, stationary subdivision surfaces , 2010, TOGS.

[128]  Jörg Peters,et al.  A realtime GPU subdivision kernel , 2005, SIGGRAPH '05.

[129]  Kaihuai Qin,et al.  Eigenanalysis and continuity of non-uniform Doo-Sabin surfaces , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).

[130]  Hartmut Prautzsch,et al.  A G2-Subdivision Algorithm , 1996, Geometric Modelling.

[131]  Jörg Peters,et al.  GPU conversion of quad meshes to smooth surfaces , 2008, SPM '08.

[132]  Peter Schröder,et al.  Rapid evaluation of Catmull-Clark subdivision surfaces , 2002, Web3D '02.

[133]  Jörg Peters,et al.  Interference Detection for Subdivision Surfaces , 2004, Comput. Graph. Forum.

[134]  Scott Schaefer,et al.  Exact Evaluation of Non-Polynomial Subdivision Schemes at Rational Parameter Values , 2007 .

[135]  Jörg Peters,et al.  Bi-3 C2 polar subdivision , 2009, ACM Trans. Graph..

[136]  B. Mourrain,et al.  A Subdivision Arrangement Algorithm for Semi-Algebraic Curves: An Overview , 2007 .

[137]  Hartmut Prautzsch,et al.  Freeform splines , 1997, Computer Aided Geometric Design.

[138]  Maxim Kazakov,et al.  Catmull-Clark subdivision for geometry shaders , 2007, AFRIGRAPH '07.

[139]  Neil A. Dodgson,et al.  Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices , 2006, Comput. Graph. Forum.

[140]  Jörg Peters,et al.  On the curvature of guided surfaces , 2008, Comput. Aided Geom. Des..

[141]  Qi Chen,et al.  Analyzing midpoint subdivision , 2009, Comput. Aided Geom. Des..

[142]  Thomas J. Cashman,et al.  NURBS-compatible subdivision surfaces , 2011 .

[143]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[144]  Charles T. Loop Second order smoothness over extraordinary vertices , 2004, SGP '04.