Artificial Intelligence and Expert Systems in Mass Spectrometry

This article provides a brief introduction to aspects of mass spectrometry (MS) that employ artificial intelligence (AI) and expert system (ES) technology. These areas have grown rapidly with the development of computer software and hardware capabilities. In many cases, they have become fundamental parts of modern mass spectrometers. Specific attention is paid to applications that demonstrate how important features of MS are now dependent on AI and ESs. The following topics are specifically covered: history, MS data systems, biological applications, artificial neural networks (ANNs), and optimization techniques.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[3]  Douglas B. Kell,et al.  Characterisation of intact microorganisms using electrospray ionisation mass spectrometry , 1999 .

[4]  Anna,et al.  Rapid Assessment of the Adulteration of Virgin Olive Oils by Other Seed Oils Using Pyrolysis Mass Spectrometry and Artificial Neural Networks , 1993 .

[5]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[6]  Thomas L. Isenhour,et al.  Computerized learning machines applied to chemical problems. Molecular formula determination from low resolution mass spectrometry , 1969 .

[7]  Mark A. Kramer,et al.  Autoassociative neural networks , 1992 .

[8]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[9]  Peter de B. Harrington,et al.  Self-Configuring Radial Basis Function Neural Networks for Chemical Pattern Recognition , 1999, J. Chem. Inf. Comput. Sci..

[10]  David E. Rumelhart,et al.  A Neural Network That Classifies Mass Spectra , 2001 .

[11]  Alan C. Ward,et al.  Analysis of differentiation state in Streptomyces albidoflavus SMF301 by the combination of pyrolysis mass spectrometry and neural networks , 1998 .

[12]  Alan C. Ward,et al.  Rapid detection of Verocytotoxin production status in Escherichia coli by artificial neural network analysis of pyrolysis-mass spectra , 1995 .

[13]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[14]  Stephen A. Martin,et al.  Delayed extraction matrix‐assisted laser desorption time‐of‐flight mass spectrometry , 1995 .

[15]  R. S. Brown,et al.  Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. , 1995, Analytical chemistry.

[16]  R. Cotter,et al.  Mass Spectrometry , 1992, Bio/Technology.

[17]  H. Lohninger,et al.  Comparing the performance of neural networks to well-established methods of multivariate data analysis: the classification of mass spectral data , 1992 .

[18]  D. Kell,et al.  Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production. , 2002, Biotechnology and bioengineering.

[19]  M. Forina,et al.  Multivariate calibration. , 2007, Journal of chromatography. A.

[20]  D. Massart,et al.  The Radial Basis Functions — Partial Least Squares approach as a flexible non-linear regression technique , 1996 .

[21]  D. Kell,et al.  Quantitative analysis of the adulteration of orange juice with sucrose using pyrolysis mass spectrometry and chemometrics , 1997 .

[22]  P de B Harrington Temperature-constrained cascade correlation networks. , 1998, Analytical chemistry.

[23]  J. Chun,et al.  Long-term identification of streptomycetes using pyrolysis mass spectrometry and artificial neural networks. , 1997, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[24]  Edmund R. Malinowski,et al.  Application of Factor Analysis to the Prediction of Activity Coefficients of Nonelectrolytes , 1966 .

[25]  H. Macfie,et al.  Comparison of canonical variates analysis with target rotation and least squares regression as applied to pyrolysis mass spectra of simple biochemical mixtures , 1985 .

[26]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[27]  Jostein Toft,et al.  Evolutionary rank analysis applied to multidetectional chromatographic structures , 1995 .

[28]  Brian D. Ripley,et al.  Neural Networks and Related Methods for Classification , 1994 .

[29]  A C Ward,et al.  Artificial neural network analysis of pyrolysis mass spectrometric data in the identification of Streptomyces strains. , 1993, FEMS microbiology letters.

[30]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[31]  M. Boguski,et al.  dbEST — database for “expressed sequence tags” , 1993, Nature Genetics.

[32]  J. Todd,et al.  Ion-molecule reaction studies with a quadrupole ion storage trap☆ , 1972 .

[33]  Howard Mark,et al.  Principles and Practice of Spectroscopic Calibration , 1991 .

[34]  R. Whittal,et al.  High-resolution matrix-assisted laser desorption/ionization in a linear time-of-flight mass spectrometer. , 1995, Analytical chemistry.

[35]  Douglas B. Kell,et al.  Plant seed classification using pyrolysis mass spectrometry with unsupervised learning: The application of auto-associative and Kohonen artificial neural networks , 1996 .

[36]  D B Kell,et al.  Rapid screening for metabolite overproduction in fermentor broths, using pyrolysis mass spectrometry with multivariate calibration and artificial neural networks , 1994, Biotechnology and bioengineering.

[37]  D B Kell,et al.  Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. , 2000, Analytical chemistry.

[38]  Robert A. Edmunds,et al.  The Prentice Hall guide to expert systems , 1988 .

[39]  E. Anklam,et al.  Classification of cocoa butters using pyrolysis-mass spectrometry , 1998 .

[40]  Alan C. Ward,et al.  Rapid and quantitative analysis of clavulanic acid production by the combination of pyrolysis mass spectrometry and artificial neural network , 1998 .

[41]  A C Ward,et al.  Rapid identification of streptomycetes by artificial neural network analysis of pyrolysis mass spectra. , 1993, FEMS microbiology letters.

[42]  Steven D. Brown Chemical Systems under Indirect Observation: Latent Properties and Chemometrics , 1995 .

[43]  Royston Goodacre,et al.  Identification and Discrimination of Oral Asaccharolytic Eubacterium spp. by Pyrolysis Mass Spectrometry and Artificial Neural Networks , 1996, Current Microbiology.

[44]  D. Kell,et al.  Correction of mass spectral drift using artificial neural networks. , 1996, Analytical chemistry.

[45]  Thomas J. McAvoy,et al.  KNOWLEDGE EXTRACTION IN CHEMICAL PROCESS CONTROL , 1994 .

[46]  R. W. Rozett,et al.  Classification of compounds by the factor analysis of their mass spectra , 1976 .

[47]  Kurt Hornik,et al.  Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks , 1990, Neural Networks.

[48]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[49]  B. Chait,et al.  Identification and characterization of posttranslational modifications of proteins by MALDI ion trap mass spectrometry. , 1997, Analytical chemistry.

[50]  Tamás D. Gedeon,et al.  Data Mining of Inputs: Analysing Magnitude and Functional Measures , 1997, Int. J. Neural Syst..

[51]  C. Gutteridge 14 – Numerical Methods in the Classification of Micro-organisms by Pyrolysis Mass Spectrometry , 1985 .

[52]  Philip K. Hopke,et al.  Target transformation factor analysis , 1989 .

[53]  R. Edmondson,et al.  Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass measurement accuracy by using delayed extraction , 1996, Journal of the American Society for Mass Spectrometry.

[54]  Douglas B. Kell,et al.  Rapid and quantitative analysis and bioprocesses using pyrolysis mass spectrometry and neural networks: application to indole production , 1993 .

[55]  P. Harrington Temperature-constrained backpropagation neural networks , 1994 .

[56]  Peter de B. Harrington,et al.  Minimal neural networks: Differentiation of classification entropy , 1993 .

[57]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[58]  C. A. Smith,et al.  Prediction of some physical properties of organic molecules by factor analysis of gas chromatographic retention indexes , 1973 .

[59]  W. Baxt Application of artificial neural networks to clinical medicine , 1995, The Lancet.

[60]  R. Goodacre,et al.  Chemometric Analysis of Diffuse Reflectance-Absorbance Fourier Transform Infrared Spectra Using Rule Induction Methods: Application to the Classification of Eubacterium Species , 1998 .

[61]  S. Wold Nonlinear partial least squares modelling II. Spline inner relation , 1992 .

[62]  B. Manly Multivariate Statistical Methods : A Primer , 1986 .

[63]  Douglas B. Kell,et al.  Rapid and non-invasive quantification of metabolic substrates in biological cell suspensions using non-linear dielectric spectroscopy with multivariate calibration and artificial neural networks. Principles and applications , 1996 .

[64]  D. R. Causton,et al.  A Biologist's Advanced Mathematics , 1977 .

[65]  Peter de B. Harrington,et al.  FLIN : Fuzzy Linear Interpolating Network , 1993 .

[66]  R. M. Mills,et al.  A new mass spectrometer , 1959 .

[67]  Randy J. Pell,et al.  Comments on the power method , 1990 .

[68]  William H. Press,et al.  Numerical recipes , 1990 .

[69]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[70]  Denise M O'Hara,et al.  Antibody used to identify penicillin‐binding protein 2' in methicillin‐resistant strains of Staphylococcus aureus (MRSA) , 1987, FEBS letters.

[71]  David E. Rumelhart,et al.  MSnet: A Neural Network which Classifies Mass Spectra , 1990 .

[72]  L. Montanarella,et al.  Chemometric classification of some european wines using pyrolysis mass spectrometry , 1995 .

[73]  H. Macfie,et al.  Comparative studies on some methods for handling quantitative data generated by analytical pyrolysis , 1982 .

[74]  Igor V. Tetko,et al.  Neural Network Studies. 3. Variable Selection in the Cascade-Correlation Learning Architecture , 1998, J. Chem. Inf. Comput. Sci..

[75]  Peter de B. Harrington,et al.  Optimal Associative Memory for Background Correction of Spectra , 1994 .

[76]  Royston Goodacre,et al.  Neural networks and olive oil , 1992, Nature.

[77]  D.R. Hush,et al.  Progress in supervised neural networks , 1993, IEEE Signal Processing Magazine.

[78]  P. Weiner,et al.  Factor analysis of some chemical and physical influences in gas-liquid chromatography , 1972 .

[79]  P. Reynolds,et al.  Methicillin-resistant strains of Staphylococcus aureus; presence of identical additional penicillin-binding protein in all strains examined , 1986 .

[80]  J. Zurada,et al.  Determining the Significance of Input Parameters using Sensitivity Analysis , 1995, IWANN.

[81]  R. S. Brown,et al.  Sequence-specific fragmentation of matrix-assisted laser-desorbed protein/peptide ions. , 1995, Analytical chemistry.

[82]  Bruce R. Kowalski,et al.  Comment on a recent sensitivity analysis of radial base function and multi-layer feed-forward neural network models , 1996 .

[83]  B. Chait,et al.  ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. , 2000, Analytical chemistry.

[84]  Frode Brakstad,et al.  The feasibility of latent variables applied to GC-MS data , 1995 .

[85]  J R Yates,et al.  Mass spectrometry. From genomics to proteomics. , 2000, Trends in genetics : TIG.

[86]  I. Mclaren,et al.  TIME-OF-FLIGHT MASS SPECTROMETER WITH IMPROVED RESOLUTION , 1955 .

[87]  Damo Zhu,et al.  The critical evaluation of a comprehensive mass spectral library , 1999, Journal of the American Society for Mass Spectrometry.

[88]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[89]  F. Regnier,et al.  C-terminal ladder sequencing via matrix-assisted laser desorption mass spectrometry coupled with carboxypeptidase Y time-dependent and concentration-dependent digestions. , 1995, Analytical chemistry.

[90]  S. Wold,et al.  Multi‐way principal components‐and PLS‐analysis , 1987 .

[91]  Lynne Boddy,et al.  A comparison of Radial Basis Function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry data , 1994, Comput. Appl. Biosci..

[92]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[93]  Erik Johansson,et al.  Data-analysis of pyrolysis-chromatograms by means of simca pattern-recognition , 1979 .

[94]  Andrew H. Sung,et al.  Ranking importance of input parameters of neural networks , 1998 .

[95]  P. Harrington,et al.  Analysis of plastic recycling products by expert systems , 1995 .

[96]  P. Harrington,et al.  Organic polymer analysis by laser ionization mass spectrometry and pattern recognition techniques , 1990 .

[97]  A. Ikonomopoulos,et al.  Wavelet decomposition and radial basis function networks for system monitoring , 1998 .

[98]  Douglas B. Kell,et al.  GMP — good modelling practice: an essential component of good manufacturing practice , 1995 .

[99]  D B Kell,et al.  Quantitative analysis of multivariate data using artificial neural networks: a tutorial review and applications to the deconvolution of pyrolysis mass spectra. , 1996, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[100]  Douglas B. Kell,et al.  Quantitative analysis of the pyrolysis—mass spectra of complex mixtures using artificial neural networks: Application to amino acids in glycogen , 1993 .

[101]  Halbert White,et al.  Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings , 1990, Neural Networks.

[102]  R. J. Gilbert,et al.  The detection of caffeine in a variety of beverages using Curie-point pyrolysis mass spectrometry and genetic programming , 1999 .

[103]  Thomas Jackson,et al.  Neural Computing - An Introduction , 1990 .

[104]  Stephen A. Martin,et al.  On the initial velocity of ions generated by matrix-assisted laser desorption ionization and its effect on the calibration of delayed extraction time-of-flight mass spectra , 1997 .

[105]  John H. Kalivas,et al.  Interrelationships between sensitivity and selectivity measures for spectroscopic analysis , 1996 .

[106]  H M Davey,et al.  Rapid analysis of high-dimensional bioprocesses using multivariate spectroscopies and advanced chemometrics. , 2000, Advances in biochemical engineering/biotechnology.

[107]  P. Harrington,et al.  Screening GC-MS data for carbamate pesticides with temperature-constrained–cascade correlation neural networks , 2000 .

[108]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[109]  F. Reniero,et al.  Use of pyrolysis–mass spectrometry in food analysis: applications in the food analysis laboratory of the European Commissions’ Joint Research Centre , 1999 .

[110]  Chong-Ho Choi,et al.  Sensitivity analysis of multilayer perceptron with differentiable activation functions , 1992, IEEE Trans. Neural Networks.

[111]  Busolo Wa Wabuyele,et al.  Fuzzy Optimal Associative Memory for Background Prediction of Near-Infrared Spectra , 1996 .

[112]  Peter de B. Harrington,et al.  Self‐Configuring Radial Basis Function Neural Networks for Chemical Pattern Recognition. , 2000 .

[113]  P. Weiner,et al.  Retention index-structure relationships for alcohols using factor analysis , 1972 .

[114]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[115]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[116]  Svante Wold,et al.  Major components influencing retention indices in gas chromatography , 1973 .

[117]  Richard Lippmann,et al.  Neural Network Classifiers Estimate Bayesian a posteriori Probabilities , 1991, Neural Computation.

[118]  T O Larsen,et al.  Classification of species in the genus Penicillium by Curie point pyrolysis/mass spectrometry followed by multivariate analysis and artificial neural networks. , 1996, Journal of mass spectrometry : JMS.

[119]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[120]  A. Podtelejnikov,et al.  Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Douglas B. Kell,et al.  Rapid and Quantitative Analysis of the Pyrolysis Mass Spectra of Complex Binary and Tertiary Mixtures Using Multivariate Calibration and Artificial Neural Networks , 1994 .

[122]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[123]  W. Windig,et al.  Interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation , 1983 .

[124]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[125]  S. Kriebel,et al.  Characterization of cocoa butters and other vegetable fats by pyrolysis-mass spectrometry , 1997 .

[126]  L. B. Rogers,et al.  Principal-component analysis applied to chromatographic data , 1972 .

[127]  D. Steinberg,et al.  Technometrics , 2008 .

[128]  Halbert White,et al.  Artificial Neural Networks: Approximation and Learning Theory , 1992 .

[129]  R. Dybowski,et al.  Artificial neural networks in pathology and medical laboratories , 1995, The Lancet.

[130]  Edmund R. Malinowski,et al.  Determination of the number of factors and the experimental error in a data matrix , 1977 .

[131]  W. Dixon BMD : biomedical computer programs , 1967 .

[132]  J. M. Gillette Mass Spectrometer Data Reduction Program for IBM 650 , 1959 .

[133]  J. B. Justice,et al.  Factor analysis of mass spectra , 1975 .

[134]  D B Kell,et al.  Discrimination between methicillin-resistant and methicillin-susceptible Staphylococcus aureus using pyrolysis mass spectrometry and artificial neural networks. , 1998, The Journal of antimicrobial chemotherapy.

[135]  T J McAvoy,et al.  A comparison of neural networks and partial least squares for deconvoluting fluorescence spectra , 1992, Biotechnology and bioengineering.

[136]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[137]  D. Kell,et al.  Pyrolysis mass spectrometry and its applications in biotechnology. , 1996, Current opinion in biotechnology.

[138]  Bruce G. Buchanan,et al.  Applications of artificial intelligence for chemical inference. I - The number of possible organic compounds - Acyclic structures containing C, H, O, and N. , 1969 .

[139]  R. M. Wallace,et al.  A Method for the Determination of Rank in the Analysis of Absorption Spectra of Multicomponent Systems1 , 1964 .

[140]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[141]  H. Gampp,et al.  Evolving Factor Analysis , 1987 .

[142]  Markus Lipp,et al.  Characterisation of Italian vinegar by pyrolysis–mass spectrometry and a sensor device (‘electronic nose’) , 1998 .

[143]  P. Harrington,et al.  Variable alignment of high resolution data by cluster analysis , 1995 .

[144]  Peter de B. Harrington,et al.  Minimal neural networks: Concerted optimization of multiple decision planes , 1993 .

[145]  Sven P. Jacobsson Feature extraction of polysaccharides by low-dimensional internal representation neural networks and infrared spectroscopy , 1994 .

[146]  D. Kell,et al.  Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods , 1997 .

[147]  Marvin L. Vestal,et al.  Resolution and mass accuracy in matrix-assisted laser desorption ionization-time-of-flight , 1998 .

[148]  Royston Goodacre,et al.  Use of Pyrolysis Mass Spectrometry with Supervised Learning for the Assessment of the Adulteration of Milk of Different Species , 1997 .

[149]  R. Zubarev,et al.  A three-point calibration procedure for matrix-assisted laser desorption/ionization mass spectrometry utilizing multiply charged ions and their mean initial velocities , 1996 .

[150]  S. Wold,et al.  INLR, implicit non‐linear latent variable regression , 1997 .

[151]  J Morris,et al.  Neural-network contributions in biotechnology. , 1994, Trends in biotechnology.

[152]  Klaus Schulten,et al.  Self-organizing maps: ordering, convergence properties and energy functions , 1992, Biological Cybernetics.

[153]  R. Todeschini k-nearest neighbour method: The influence of data transformations and metrics , 1989 .

[154]  J. Kalivas,et al.  Condition numbers, iterative refinement and error bounds , 1989 .

[155]  Douglas B. Kell,et al.  Diffuse reflectance absorbance spectroscopy taking in chemometrics (DRASTIC). A hyperspectral FT-IR-based approach to rapid screening for metabolite overproduction , 1997 .

[156]  E M Timmins,et al.  Rapid quantitative analysis of binary mixtures of Escherichia coli strains using pyrolysis mass spectrometry with multivariate calibration and artificial neural networks , 1997, Journal of applied microbiology.

[157]  R. Goodacre,et al.  Sub-species discrimination, using pyrolysis mass spectrometry and self-organising neural networks, of Propionibacterium acnes isolated from normal human skin. , 1996, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[158]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[159]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[160]  Paul Geladi,et al.  Chemometric analysis of multisensor arrays , 1986 .

[161]  P. Sen,et al.  Introduction to bivariate and multivariate analysis , 1981 .

[162]  P. Harrington,et al.  Prediction of substructure and toxicity of pesticides with temperature constrained-cascade correlation network from low-resolution mass spectra. , 1999, Analytical chemistry.

[163]  A. Marshall,et al.  Theory of Fourier transform ion cyclotron resonance mass spectroscopy. I. Fundamental equations and low‐pressure line shape , 1976 .

[164]  Douglas B. Kell,et al.  Rapid and quantitative analysis of metabolites in fermentor broths using pyrolysis mass spectrometry with supervised learning: application to the screening of Penicillium chrysogenum fermentations for the overproduction of penicillins☆ , 1995 .

[165]  J. T. Magee,et al.  On mass spectrometer instrument standardization and interlaboratory calibration transfer using neural networks , 1997 .

[166]  Edmund R. Malinowski,et al.  Factor analysis of solvent shifts in proton magnetic resonance , 1970 .

[167]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[168]  George Henry Dunteman,et al.  Introduction To Multivariate Analysis , 1984 .

[169]  Johann Gasteiger,et al.  Neural Networks for Chemists: An Introduction , 1993 .

[170]  J. Reilly,et al.  High-Resolution Time-of-Flight Mass Spectra of Alkanethiolate-Coated Gold Nanocrystals , 1998 .

[171]  S Mangrulkar,et al.  Artificial neural systems. , 1990, ISA transactions.

[172]  P. F. Diamond Eight Peak Index of Mass Spectra , 1971 .

[173]  H. Woodruff,et al.  A totally automated data acquisition/reduction system for routine treatment of mass spectroscopic data by factor analysis , 1980 .

[174]  G. L. Ritter,et al.  Factor analysis of the mass spectra of mixtures , 1976 .

[175]  H. Lohninger,et al.  Classification of mass spectra: A comparison of yes/no classification methods for the recognition of simple structural properties , 1994 .

[176]  Douglas B. Kell,et al.  Determination of the geographical origin of Italian extra virgin olive oil using pyrolysis mass spectrometry and artificial neural networks , 1997 .

[177]  Philip D. Wasserman,et al.  Neural computing - theory and practice , 1989 .

[178]  William H. Press,et al.  Numerical recipes in C , 2002 .

[179]  J. Futrell,et al.  Separation of mass spectra of mixtures by factor analysis , 1979 .

[180]  A. Shevchenko,et al.  Rapid 'de novo' peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. , 1997, Rapid communications in mass spectrometry : RCM.

[181]  E. Anklam,et al.  Characterisation of milk samples with various whey protein contents by pyrolysis–mass spectrometry (Py–MS) , 1999 .

[182]  D. Kell,et al.  Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. , 1996, Microbiological reviews.

[183]  Agnar Höskuldsson,et al.  Quadratic PLS regression , 1992 .

[184]  Paul J. Werbos,et al.  The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting , 1994 .

[185]  Alison Cawsey,et al.  The essence of artificial intelligence , 1997 .

[186]  Johanna Smeyers-Verbeke,et al.  Handbook of Chemometrics and Qualimetrics: Part A , 1997 .

[187]  D. Pappin Peptide mass fingerprinting using MALDI-TOF mass spectrometry. , 2003, Methods in molecular biology.

[188]  B. Chait,et al.  Matrix-assisted laser desorption ionization mass-spectrometry of proteins. , 1996, Methods in enzymology.

[189]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[190]  D B Kell,et al.  Rapid and quantitative analysis of recombinant protein expression using pyrolysis mass spectrometry and artificial neural networks: application to mammalian cytochrome b5 in Escherichia coli. , 1994, Journal of biotechnology.

[191]  W. Windig,et al.  Nonsupervised numerical component extraction from pyrolysis mass spectra of complex mixtures. , 1984, Analytical chemistry.

[192]  D. Kell,et al.  Noninvasive, On-Line Monitoring of the Biotransformation by Yeast of Glucose to Ethanol Using Dispersive Raman Spectroscopy and Chemometrics , 1999 .

[193]  Masato Koda Stochastic sensitivity analysis method for neural network learning , 1995 .

[194]  D B Kell,et al.  Rapid identification using pyrolysis mass spectrometry and artificial neural networks of Propionibacterium acnes isolated from dogs. , 1994, The Journal of applied bacteriology.

[195]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[196]  E. Feigenbaum,et al.  Applications of artificial intelligence for chemical inference. I. Number of possible organic compounds. Acyclic structures containing carbon, hydrogen, oxygen, and nitrogen , 1969 .

[197]  D B Kell,et al.  Rapid analysis of the expression of heterologous proteins in Escherichia coli using pyrolysis mass spectrometry and Fourier transform infrared spectroscopy with chemometrics: application to alpha 2-interferon production. , 1999, Journal of biotechnology.

[198]  M. Bonneau,et al.  Rapid classification of backfat samples selected according to their androstenone content by pyrolysis-mass-spectrometry , 1996 .

[199]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[200]  Veli-Matti Taavitsainen,et al.  Nonlinear data analysis with latent variables , 1992 .

[201]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[202]  Richard M. Wallace,et al.  ANALYSIS OF ABSORPTION SPECTRA OF MULTICOMPONENT SYSTEMS1 , 1960 .

[203]  J. D. Morrison,et al.  Computer methods in analytical mass spectrometry. Empirical identification of molecular class , 1968 .

[204]  Royston Goodacre,et al.  Chemometric analyses with self organising feature maps: A worked example of the analysis of cosmetics using Raman spectroscopy , 1999 .

[205]  James P. Reilly,et al.  Improving the resolution of matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry by exploiting the correlation between ion position and velocity , 1994 .

[206]  M. Lamberto,et al.  Principal component analysis in fast atom bombardment-mass spectrometry of triacylglycerols in edible oils , 1995 .

[207]  P. Harrington,et al.  Fuzzy multivariate rule‐building expert systems: Minimal neural networks , 1991 .

[208]  S. Wold,et al.  Nonlinear PLS modeling , 1989 .

[209]  A. Ward,et al.  Application of neural networks to the analysis of pyrolysis mass spectra. , 1997, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[210]  P. Minkkinen,et al.  Determination of acid value, hydroxyl value and water content in reactions between dicarboxylic acids and diols using near-infrared spectroscopy and non-linear partial least squares regression , 1997 .

[211]  Igor V. Tetko,et al.  Variable Selection in the Cascade-Correlation Learning Architecture , 2000 .

[212]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[213]  D B Kell,et al.  Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. , 1998, Microbiology.

[214]  G. R. Hext,et al.  Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation , 1962 .

[215]  W. Paul,et al.  Das elektrische Massenfilter als Massenspektrometer und Isotopentrenner , 1958 .

[216]  S. Stein An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data , 1999 .

[217]  Nigel Crook,et al.  Using input parameter influences to support the decisions of feedforward neural networks , 1999, Neurocomputing.

[218]  R. W. Rozett,et al.  Methods of factor analysis of mass spectra , 1975 .

[219]  H. Kaiser The varimax criterion for analytic rotation in factor analysis , 1958 .

[220]  D. Kell,et al.  Rapid authentication of animal cell lines using pyrolysis mass spectrometry and auto-associative artificial neural networks , 2004, Cytotechnology.

[221]  L. Gyergyek,et al.  Neural network methodologies for mass spectra recognition , 1997 .

[222]  Peter de B. Harrington,et al.  Quantitative comparison of bidirectional and optimal associative memories for background prediction of spectra , 1995 .

[223]  A C Ward,et al.  Rapid identification of species within the Mycobacterium tuberculosis complex by artificial neural network analysis of pyrolysis mass spectra. , 1994, Journal of medical microbiology.

[224]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .