Carnap and the Logic of Inductive Inference

Publisher Summary This chapter discusses Carnap's work on probability and induction, using the notation and terminology of modern mathematical probability, from the perspective of the modern Bayesian or subjective school of probability. Carnap used logical probability as a tool in understanding the quantitative confirmation of a hypothesis based on evidence and in rational decision making. The resulting analysis of induction involved a two step process. The first step included a broad class of possible confirmation functions, commonly called the “regular c-functions,” along with a unique function in that class (early Carnap) or a parametric family (later Carnap) of specific confirmation functions. The first step in the process essentially placed Carnap in substantial agreement with subjectivists. The second step, however, limits the class of probabilities that distinguishes Carnap from the subjectivist brethren. Carnap largely shaped the way current philosophy views the nature and role of probability, in particular its widespread acceptance of the Bayesian paradigm.

[1]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[2]  D. Freedman,et al.  Finite Exchangeable Sequences , 1980 .

[3]  J. Earman Testing Scientific Theories , 1984 .

[4]  J. A. Mourant The Philosophy of Rudolph Carnap , 1965 .

[5]  H. G. Alexander THE PARADOXES OF CONFIRMATION , 1958, The British Journal for the Philosophy of Science.

[6]  H. Grosser Chicago , 1906 .

[7]  Ronald Miller,et al.  The Role of Absolute Continuity in Merging of Opinions and Rational Learning , 1996 .

[8]  C. D. Broad,et al.  Mr. Johnson on the Logical Foundations of Science , 1924 .

[9]  Brian Skyrms,et al.  Carnapian inductive logic and Bayesian statistics , 1996 .

[10]  F. Y. Edgeworth THE PHILOSOPHY OF CHANCE , 1922 .

[11]  T. Fine,et al.  The Emergence of Probability , 1976 .

[12]  J. Romeijn Analogical Predictions for Explicit Similarity , 2006 .

[13]  William Stanley Jevons,et al.  The Principles of Science: A Treatise on Logic and Scientific Method , 2007 .

[14]  H. Jeffreys,et al.  Theory of probability , 1896 .

[15]  Irving John Good,et al.  The Estimation of Probabilities: An Essay on Modern Bayesian Methods , 1965 .

[16]  L. Shapley,et al.  Statistics, probability, and game theory : papers in honor of David Blackwell , 1999 .

[17]  Bruno de Finetti,et al.  Probability, induction and statistics , 1972 .

[18]  R. Carnap,et al.  Induktive Logik und Wahrscheinlichkeit , 1959 .

[19]  Edwin T. Jaynes Prior Probabilities , 2010, Encyclopedia of Machine Learning.

[20]  J. Oxford,et al.  Oxford , 1968, Leaving The Arena.

[21]  Ilkka Niiniluoto,et al.  The Development of the Hintikka Program , 2011, Inductive Logic.

[22]  D. Stalker,et al.  Grue the New Riddle of Induction , 1994 .

[23]  W. Kneale,et al.  Probability and Induction , 1950 .

[24]  W. E. Johnson Logic - Part III - The Logical Foundations of Science (1924) , 1927 .

[25]  W. E. Johnson I.—PROBABILITY: THE DEDUCTIVE AND INDUCTIVE PROBLEMS , 1932 .

[26]  J. Keynes A Treatise on Probability. , 1923 .

[27]  Sandy L. Zabell,et al.  The rule of succession , 1989 .

[28]  Robert Rosthal,et al.  Induction and Hypothesis , 1959 .

[29]  Richard Creath,et al.  The Cambridge Companion to Carnap , 2008 .

[30]  T. Kuipers Studies in inductive probability and rational expectation , 1978 .

[31]  Remarks on the Fundamental Principle of the Theory of Probabilities , 1851 .

[32]  R. Heller,et al.  © Macmillan , 1977 .

[33]  Ian Hacking,et al.  Slightly More Realistic Personal Probability , 1967, Philosophy of Science.

[34]  Brad Armendt Dutch Books, Additivity, and Utility Theory , 1993 .

[35]  B. Skyrms Carnapian inductive logic for Markov chains , 1991, Erkenntnis.

[36]  C. Howson Popper, Prior Probabilities, and Inductive Inference , 1987, The British Journal for the Philosophy of Science.

[37]  Jan Sprenger,et al.  Hempel and the Paradoxes of Confirmation , 2011, Inductive Logic.

[38]  C. HOWSON MUST THE LOGICAL PROBABILITY OF LAWS BE ZERO?* , 1973, The British Journal for the Philosophy of Science.

[39]  J. Davenport Editor , 1960 .

[40]  L. Stein,et al.  Probability and the Weighing of Evidence , 1950 .

[41]  P. Horwich Probability and Evidence , 1972 .

[42]  A. Morton Betting on Theories: (Cambridge Studies in Probability, Induction, and Decision Theory) , 1994 .

[43]  Brian Skyrms,et al.  The Dynamics Of Rational Deliberation , 1990 .

[44]  R. Jeffrey Conditioning, Kinematics, and Exchangeability , 1988 .

[45]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[46]  J. Ghosh,et al.  Statistics : applications and new directions , 1984 .

[47]  H. Jeffreys Logical Foundations of Probability , 1952, Nature.

[48]  C. D. Broad,et al.  The Relation between Induction and Probability , 1968 .

[49]  P. Maher Betting on Theories , 1993 .

[50]  Peter B. M. Vranas,et al.  Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution , 2004, The British Journal for the Philosophy of Science.

[51]  Daniel J. Velleman American Mathematical Monthly , 2010 .

[52]  J. Hintikka,et al.  Aspects of Inductive Logic. , 1968 .

[53]  Vasant Shankar Huzurbazar,et al.  On the certainty of an inductive inference , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[54]  Dorothy Wrinch,et al.  LXXV. On some aspects of the theory of probability , 1919 .

[55]  Friedrich Waismann Logische analyse des Wahrscheinlichkeitsbegriffs , 1930 .

[56]  An Introduction to Mathematical Probability. , 1925 .

[57]  Carl G. Hempel,et al.  I.—STUDIES IN THE LOGIC OF CONFIRMATION (II.) , 1945 .

[58]  F. Hoppe Pólya-like urns and the Ewens' sampling formula , 1984 .

[59]  W. E. Johnson The logical foundations of science , 1924 .

[60]  Rudolf Carnap,et al.  The continuum of inductive methods , 1952 .

[61]  I. Good On the Principle of Total Evidence , 1967 .

[62]  John Earman,et al.  Bayes or bust , 1992 .

[63]  R. Carnap Notes on probability and induction , 1973, Synthese.

[64]  Paul Lelorier,et al.  Predicting the unpredictable. , 2010, Heart rhythm.

[65]  B. Skyrms Diachronic Coherence and Radical Probabilism , 2006, Philosophy of Science.

[66]  G. Polya,et al.  Heuristic Reasoning and the Theory of Probability , 1941 .

[67]  認識・経験・権力--Ian Hacking,The Emergence of Probabilityを読む , 1996 .

[68]  S. Zabell W. E. Johnson's "Sufficientness" Postulate , 1982 .

[69]  R. Carnap,et al.  On Inductive Logic , 1945, Philosophy of Science.

[70]  Sandy L. Zabell,et al.  Symmetry and its discontents , 2005 .

[71]  I. Good Some Statistical Applications of Poisson's Work , 1986 .

[72]  De Finetti's Theorem , 2009 .

[73]  G. Beck,et al.  Actualités scientifiques et industrielles , 1933 .

[74]  Dov M. Gabbay,et al.  Handbook of the history of logic , 2004 .

[75]  P. B. Vranas Have Your Cake and Eat It Too: The Old Principal Principle Reconciled with the New* , 2004 .

[76]  William Harper,et al.  Causation, chance, and credence , 1988 .

[77]  D. Blackwell,et al.  Merging of Opinions with Increasing Information , 1962 .

[78]  A. Viana Alonso [Logic or chance?]. , 1992, Medicina clinica.

[79]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[80]  Gunter Kreisel Biographical Memoirs of Fellows of the Royal Society of London 26 , 1980 .

[81]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[82]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[83]  K. Knopp Theory and Application of Infinite Series , 1990 .

[84]  R. Carnap The Two Concepts of Probability: The Problem of Probability , 1945 .

[85]  R. Falk A closer look at the probabilities of the notorious three prisoners , 1992, Cognition.

[86]  J. Hintikka,et al.  An Axiomatic Foundation for the Logic of Inductive Generalization , 1976 .

[87]  S. Zabell Characterizing Markov exchangeable sequences , 1995 .

[88]  R. Persaud Philosophy of science , 1992, The Lancet.

[89]  Stephen M. Stigler,et al.  Thomas Bayes's Bayesian Inference , 1982 .

[90]  F. e. Calcul des Probabilités , 1889, Nature.

[91]  G. Gregory,et al.  Probability, Induction and Statistics , 1974 .

[92]  Leland Gerson Neuberg,et al.  Bayes or Bust?-A Critical Examination of Bayesian Confirmation Theory. , 1994 .

[93]  D. Freedman,et al.  De Finetti's Theorem for Markov Chains , 1980 .

[94]  I J Good,et al.  Kinds of Probability: Although there are at least five kinds of probability, we can get along with just one kind. , 1959, Science.

[95]  D. Perkins,et al.  Good thinking… , 2004, Nursery World.

[96]  Richard C. Jeffrey,et al.  Studies in Inductive Logic and Probability. Volume 1. , 1973 .

[97]  Peter Urbach,et al.  Scientific Reasoning: The Bayesian Approach , 1989 .

[98]  M. Kendall,et al.  The Logic of Scientific Discovery. , 1959 .

[99]  M. Black Review: Karl Menger, Tri-Operational Algebra; Ferdinand L. Brown, Remarks Concerning Tri-Operational Algebra; Carl G. Hempel, Studies in the Logic of Confirmation , 1945 .

[100]  Bernard D. Katz,et al.  A Tale of Two Envelopes , 2007 .

[101]  John G. Kemeny,et al.  Fair bets and inductive probabilities , 1955, Journal of Symbolic Logic.

[102]  N. Goodman A Query on Confirmation , 1946 .

[103]  Donato Michele Cifarelli,et al.  De Finetti''''s contributions to probability and statistics , 1996 .

[104]  M ´ Emoire Sur L'art D'estimer La Probabilité Des Causes Par Les Effets , .

[105]  R. Jeffrey The Logic of Decision , 1984 .

[106]  Ehud Kalai,et al.  Weak and Strong Merging of Opinions , 1994 .

[107]  Thomas L. Heath Mathematics in Aristotle , 1949 .

[108]  S. Zabell Confirming universal generalizations , 1996, Erkenntnis.

[109]  Richard C. Jeffrey,et al.  Studies in inductive logic and probability , 1971 .

[110]  K. Popper,et al.  The Logic of Scientific Discovery , 1960 .

[111]  P. Diaconis,et al.  Conjugate Priors for Exponential Families , 1979 .

[112]  F. S. Prout Philosophical Transactions of the Royal Society of London , 2009, The London Medical Journal.

[113]  Branden Fitelson,et al.  Goodman’s “New Riddle” , 2008, J. Philos. Log..

[114]  Irving John Good,et al.  Explicativity, corroboration, and the relative odds of hypotheses , 1975, Synthese.

[115]  Joseph K. Blitzstein,et al.  Conditional probability , 2018, Fat Chance.

[116]  R. Jeffrey Carnap's inductive logic , 1973, Synthese.

[117]  R. Jeffrey Probability and the Art of Judgment , 1992 .

[118]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[119]  A. D. Morgan,et al.  An Essay on Probabilities, and Their Application to Life Contingencies and Insurance Offices , 2009 .

[120]  George Boole,et al.  An Investigation of the Laws of Thought: Frontmatter , 2009 .

[121]  Jaakko Hintikka,et al.  Basic Problems in Methodology and Linguistics , 1977 .

[122]  Richard C. Jeffrey,et al.  Studies in Inductive Logic and Probability. Volume I , 1974 .

[123]  F. Ramsey The Foundations of Mathematics and Other Logical Essays , 2001 .

[124]  D. Hubin,et al.  THE JOURNAL OF PHILOSOPHY , 2004 .

[125]  M. Mišík,et al.  Oxford University Press , 1968, PMLA/Publications of the Modern Language Association of America.

[126]  Rudolf Carnap,et al.  The Aim of Inductive Logic , 1966 .

[127]  D. W. D.Sc.,et al.  XLII. On certain fundamental principles of scientific inquiry , 1921 .

[128]  J. Earman,et al.  Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory , 1994 .

[129]  S. Zabell Symmetry and Its Discontents: The Continuum of Inductive Methods Revisited , 2005 .

[130]  Daniel Garber,et al.  Old Evidence and Logical Omniscience in Bayesian Confirmation Theory , 1983 .

[131]  J. Hintikka A Two-Dimensional Continuum of Inductive Methods* , 1966 .