Uniquely Satisfiable d-Regular (k,s)-SAT Instances

Unique k-SAT is the promised version of k-SAT where the given formula has 0 or 1 solution and is proved to be as difficult as the general k-SAT. For any k≥3, s≥f(k,d) and (s+d)/2>k−1, a parsimonious reduction from k-CNF to d-regular (k,s)-CNF is given. Here regular (k,s)-CNF is a subclass of CNF, where each clause of the formula has exactly k distinct variables, and each variable occurs in exactly s clauses. A d-regular (k,s)-CNF formula is a regular (k,s)-CNF formula, in which the absolute value of the difference between positive and negative occurrences of every variable is at most a nonnegative integer d. We prove that for all k≥3, f(k,d)≤u(k,d)+1 and f(k,d+1)≤u(k,d). The critical function f(k,d) is the maximal value of s, such that every d-regular (k,s)-CNF formula is satisfiable. In this study, u(k,d) denotes the minimal value of s such that there exists a uniquely satisfiable d-regular (k,s)-CNF formula. We further show that for s≥f(k,d)+1 and (s+d)/2>k−1, there exists a uniquely satisfiable d-regular (k,s+1)-CNF formula. Moreover, for k≥7, we have that u(k,d)≤f(k,d)+1.

[1]  Zufeng Fu,et al.  (1,0)-Super Solutions of (k,s)-CNF Formula , 2020, Entropy.

[2]  James M. Crawford,et al.  Experimental Results on the Crossover Point inSatis ability , 1993 .

[3]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[4]  Jordi Levy,et al.  Generating SAT instances with community structure , 2016, Artif. Intell..

[5]  Magnus Wahlström,et al.  An Algorithm for the SAT Problem for Formulae of Linear Length , 2005, ESA.

[6]  Russell Impagliazzo,et al.  The complexity of unique k-SAT: an isolation lemma for k-CNFs , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[7]  Chris Calabro,et al.  k-SAT Is No Harder Than Decision-Unique-k-SAT , 2009, CSR.

[8]  Olivier Dubois,et al.  On the r, s-SAT satisfiability problem and a conjecture of Tovey , 1989, Discret. Appl. Math..

[9]  Magnus Wahlström,et al.  Faster Exact Solving of SAT Formulae with a Low Number of Occurrences per Variable , 2005, SAT.

[10]  Toby Walsh,et al.  Local Search and the Number of Solutions , 1996, CP.

[11]  Klas Markström,et al.  Locality and Hard SAT-Instances , 2006, J. Satisf. Boolean Model. Comput..

[12]  Philippe Rigaux,et al.  The sort/sweep algorithm: a new method for R-tree based spatial joins , 2000, Proceedings. 12th International Conference on Scientific and Statistica Database Management.

[13]  Jesús Giráldez-Cru,et al.  Locality in Random SAT Instances , 2017, IJCAI.

[14]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[15]  Stefan Szeider,et al.  A Note on Unsatisfiable k-CNF Formulas with Few Occurrences per Variable , 2006, SIAM J. Discret. Math..

[16]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[17]  Gábor Tardos,et al.  The Local Lemma Is Asymptotically Tight for SAT , 2010, J. ACM.

[18]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[19]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[20]  Marko Znidaric,et al.  Single-solution Random 3-SAT Instances , 2005, ArXiv.

[21]  Alan Smaill,et al.  Backbone Fragility and the Local Search Cost Peak , 2000, J. Artif. Intell. Res..

[22]  Craig A. Tovey,et al.  A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..

[23]  Magnus Wahlström,et al.  Solving SAT for CNF Formulas with a One-Sided Restriction on Variable Occurrences , 2009, SAT.

[24]  Jirí Sgall,et al.  DNF tautologies with a limited number of occurrences of every variable , 2000, Theor. Comput. Sci..

[25]  Zsolt Tuza,et al.  One More Occurrence of Variables Makes Satisfiability Jump From Trivial to NP-Complete , 1993, SIAM J. Comput..

[26]  Ramamohan Paturi,et al.  Uniquely Satisfiable k-SAT Instances with Almost Minimal Occurrences of Each Variable , 2010, SAT.

[27]  Gilles Audemard,et al.  Glucose 2.1: Aggressive - but Reactive - Clause Database Management, Dynamic Restarts , 2012 .

[28]  Stefan Szeider,et al.  Computing Unsatisfiable k-SAT Instances with Few Occurrences per Variable , 2005, SAT.

[29]  Fan Xiao,et al.  An Effective Learnt Clause Minimization Approach for CDCL SAT Solvers , 2017, IJCAI.

[30]  Stefan Szeider,et al.  Families of unsatisfiable k-CNF formulas with few occurrences per variable , 2004 .

[31]  James M. Crawford,et al.  Experimental Results on the Crossover Point in Random 3-SAT , 1996, Artif. Intell..