Distributed dynamic programming for discrete-time stochastic control, and idempotent algorithms

Idempotent methods have been found to be extremely fast for the solution of dynamic programming equations associated with deterministic control problems. The original methods exploited the idempotent (e.g., max-plus) linearity of the associated semigroup operator. It is now known that curse-of-dimensionality-free idempotent methods do not require this linearity. Instead, it is sufficient that certain solution forms are retained through application of the associated semigroup operator. Here, we see that idempotent methods may be used to solve some classes of stochastic control problems. The key is the use of the idempotent distributive property. We demonstrate this approach for a class of nonlinear, discrete-time stochastic control problems.

[1]  William M. McEneaney,et al.  Convergence Rate for a Curse-of-dimensionality-Free Method for Hamilton--Jacobi--Bellman PDEs Represented as Maxima of Quadratic Forms , 2009, SIAM J. Control. Optim..

[2]  V. Kolokoltsov,et al.  Idempotent Analysis and Its Applications , 1997 .

[3]  William M. McEneaney,et al.  Max-Plus Eigenvector Methods for Nonlinear Hinfinity Problems: Error Analysis , 2004, SIAM J. Control. Optim..

[4]  J. Quadrat,et al.  Duality and separation theorems in idempotent semimodules , 2002, math/0212294.

[5]  Kellen Petersen August Real Analysis , 2009 .

[6]  Stéphane Gaubert,et al.  The Max-Plus Finite Element Method for Solving Deterministic Optimal Control Problems: Basic Properties and Convergence Analysis , 2008, SIAM J. Control. Optim..

[7]  W. McEneaney,et al.  A max-plus affine power method for approximation of a class of mixed L/sub 2/ / L/sub /spl infin// value functions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[9]  W. McEneaney CONVERGENCE RATE FOR A CURSE-OF-DIMENSIONALITY-FREE METHOD FOR HJB PDES REPRESENTED AS MAXIMA OF QUADRATIC FORMS , 2007 .

[10]  William M. McEneaney,et al.  Value-Based Tasking Controllers for Sensing Assets , 2008 .

[11]  Marianne Akian,et al.  A max-plus finite element method for solving finite horizon deterministic optimal control problems , 2004 .

[12]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[13]  Виктор Павлович Маслов,et al.  Идемпотентный функциональный анализ. Алгебраический подход@@@Idempotent Functional Analysis: An Algebraic Approach , 2001 .

[14]  A. Vannucci,et al.  BICS Bath Institute for Complex Systems A note on time-dependent DiPerna-Majda measures , 2008 .

[15]  William M. McEneaney,et al.  A Curse-of-Dimensionality-Free Numerical Method for Solution of Certain HJB PDEs , 2007, SIAM J. Control. Optim..

[16]  William M. McEneaney,et al.  A Max-Plus-Based Algorithm for a Hamilton--Jacobi--Bellman Equation of Nonlinear Filtering , 2000, SIAM J. Control. Optim..

[17]  C. Leake Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[18]  W.M. McEneaney,et al.  Value-based control of the observation-decision process , 2008, 2008 American Control Conference.

[19]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[20]  William M. McEneaney,et al.  Max-plus summation of Fenchel-transformed semigroups for solution of nonlinear Bellman equations , 2007, Syst. Control. Lett..

[21]  William M. McEneaney Complexity Reduction , Cornices and Pruning , 2008 .

[22]  W.M. McEneaney,et al.  Curse-of-complexity attenuation in the curse-of-dimensionality-free method for HJB PDEs , 2008, 2008 American Control Conference.

[23]  Willi Hock,et al.  Lecture Notes in Economics and Mathematical Systems , 1981 .

[24]  R. Schilling Measures, Integrals and Martingales: Frontmatter , 2006 .

[25]  William McEneaney,et al.  Min–Plus Eigenvector Methods for Nonlinear $\rm H_\infty$ Problems with Active Control , 2004 .

[26]  Bonaventure Intercontinental,et al.  ON DECISION AND CONTROL , 1985 .

[27]  William M. McEneaney,et al.  Max-plus methods for nonlinear control and estimation , 2005 .