A new method for online parameter estimation of Hunt-Crossley environment dynamic models

Online estimates of unknown environment dynamics are used for the control of robotic contact tasks. The Hunt-Crossley nonlinear dynamic model of environments has been shown to be more consistent with the physics of contact, compared to the classical linear models, such as Kelvin-Voigt. This paper proposes a new method for online parameter estimation of Hunt-Crossley model and provides a mild set of conditions for guaranteed unbiased estimation. The rate and the sensitivity of convergence to parameter initialization and system parameter changes are numerically evaluated and compared for both the proposed method and an existing 2-stage identification method.

[1]  K. H. Hunt,et al.  Coefficient of Restitution Interpreted as Damping in Vibroimpact , 1975 .

[2]  W. Tranter,et al.  Signals and Systems: Continuous and Discrete , 1983 .

[3]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[4]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[5]  Dan O. Popa,et al.  An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments , 1995, IEEE Trans. Robotics Autom..

[6]  Septimiu E. Salcudean,et al.  Adaptive transparent impedance reflecting teleoperation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[7]  Septimiu E. Salcudean,et al.  Bilateral matched impedance teleoperation with application to excavator control , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[8]  David E. Orin,et al.  A compliant contact model with nonlinear damping for simulation of robotic systems , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[9]  Inna Sharf,et al.  Literature survey of contact dynamics modelling , 2002 .

[10]  Inna Sharf,et al.  Contact Stiffness and Damping Estimation for Robotic Systems , 2003, Int. J. Robotics Res..

[11]  Wayne J. Book,et al.  Force reflecting teleoperation with adaptive impedance control , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  Stefano Stramigioli,et al.  Contact impedance estimation for robotic systems , 2004, IEEE Transactions on Robotics.

[13]  Suguru Arimoto,et al.  Control of an object with parallel surfaces by a pair of finger robots without object sensing , 2005, IEEE Transactions on Robotics.

[14]  X. Mu,et al.  On Impact Dynamics and Contact Events for Biped Robots via Impact Effects , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[15]  Keyvan Hashtrudi-Zaad,et al.  Online contact impedance identification for robotic systems , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Juho Lindman,et al.  Understanding Open Source in an Industrial Context , 2008, 2008 IEEE International Conference on Signal Image Technology and Internet Based Systems.