A Survey on Pivot Rules for Linear Programming
暂无分享,去创建一个
T. Terlaky | S. Zhang | T. Terlaky | S. Zhang
[1] Katta G. Murty. The gravitational method for linear programming , 1986 .
[2] Konstantinos Paparrizos,et al. An infeasible (exterior point) simplex algorithm for assignment problems , 1991, Math. Program..
[3] Ed Klotz. Dynamic Pricing Criteria in Linear Programming , 1988 .
[4] Michael J. Todd,et al. A Dantzig-Wolfe-Like Variant of Karmarkar's Interior-Point Linear Programming Algorithm , 1990, Oper. Res..
[5] James E. Kalan. MACHINE-INSPIRED ENHANCEMENTS OF THE SIMPLEX ALGORITHM , 1975 .
[6] Robert G. Bland,et al. New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..
[7] Katta G. Murty,et al. The steepest descent gravitational method for linear programming , 1989, Discret. Appl. Math..
[8] Kees Roos,et al. An exponential example for Terlaky's pivoting rule for the criss-cross simplex method , 1990, Math. Program..
[9] Richard W. Cottle,et al. Least-index resolution of degeneracy in quadratic programming , 1980, Math. Program..
[10] V. Klee,et al. HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .
[11] Craig A. Tovey,et al. The Simplex and Projective Scaling Algorithms as Iteratively Reweighted Least Squares Methods , 1991, SIAM Rev..
[12] Nesa L'abbe Wu,et al. Linear programming and extensions , 1981 .
[13] Norman Zadeh. What is the Worst Case Behavior of the Simplex Algorithm , 1980 .
[14] Stanley Zionts,et al. The Criss-Cross Method for Solving Linear Programming Problems , 1969 .
[15] K. Borgwardt. The Simplex Method: A Probabilistic Analysis , 1986 .
[16] Gerald L. Thompson,et al. The pivot and probe algorithm for solving a linear program , 1984, Math. Program..
[17] Akihisa Tamura,et al. A DUAL INTERIOR PRIMAL SIMPLEX METHOD FOR LINEAR PROGRAMMING , 1988 .
[18] Katta G. Murty,et al. Computational complexity of parametric linear programming , 1980, Math. Program..
[19] T. Terlaky,et al. LINEAR COMPLEMENTARITY AND ORIENTED MATROIDS , 1992 .
[20] Tamás Terlaky. A new algorithm for quadratic programming , 1987 .
[21] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, Comb..
[22] Richard W. Cottle,et al. Least-Index Resolution of Degeneracy in Linear Complementarity Problems with Sufficient Matrices , 1979, SIAM J. Matrix Anal. Appl..
[23] C. E. Lemke,et al. Bimatrix Equilibrium Points and Mathematical Programming , 1965 .
[24] Michael J. Todd,et al. Polynomial expected behavior of a pivoting algorithm for linear complementarity and linear programming problems , 1986, Math. Program..
[25] Michel Las Vergnas,et al. Orientability of matroids , 1978, J. Comb. Theory B.
[26] Katta G. Murty,et al. Linear complementarity, linear and nonlinear programming , 1988 .
[27] I. Lustig,et al. The Equivalence of Dantzig's Self-Dual Parametric Algorithm for Linear Programs to Lemke's Algorithm for Linear Complementarity Problems Applied to Linear Programs. , 1987 .
[28] K. Kortanek,et al. New purification algorithms for linear programming , 1988 .
[29] T. Terlaky,et al. Some generalizations of the criss-cross method for quadratic programming , 1992 .
[30] Tamás Terlaky,et al. A finite crisscross method for oriented matroids , 1987, J. Comb. Theory B.
[31] Katta G. Murty,et al. A new interior variant of the gradient projection method for linear programming , 1985 .
[32] Richard W. Cottle,et al. The principal pivoting method revisited , 1990, Math. Program..
[33] Shuzhong Zhang,et al. On anti-cycling pivoting rules for the simplex method , 1991, Oper. Res. Lett..
[34] Robert G. Bland,et al. A combinatorial abstraction of linear programming , 1977, J. Comb. Theory B.
[35] Michael J. Todd,et al. Linear and quadratic programming in oriented matroids , 1985, J. Comb. Theory, Ser. B.
[36] Paula M. J. Harris. Pivot selection methods of the Devex LP code , 1973, Math. Program..
[37] E. Klafszky,et al. Variants of the Hungarian method for solving linear programming problems , 1989 .
[38] E. Klafszky,et al. Some generalizations of the criss-cross method for the linear complementarity problem of oriented matroids , 1989, Comb..
[39] Pingqi Pan,et al. Practical finite pivoting rules for the simplex method , 1990 .
[40] K. Fukuda,et al. On the finiteness of the criss-cross method , 1991 .
[41] David Avis,et al. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1991, SCG '91.
[42] T. Terlaky. A convergent criss-cross method , 1985 .
[43] Michael J. Todd,et al. Polynomial Algorithms for Linear Programming , 1988 .
[44] M. Todd. Complementarity in Oriented Matroids , 1984 .
[45] Victor Klee,et al. The d-Step Conjecture and Its Relatives , 1987, Math. Oper. Res..
[46] Jim Lawrence,et al. Oriented matroids , 1978, J. Comb. Theory B.
[47] Tamás Terlaky,et al. A Monotonic Build-Up Simplex Algorithm for Linear Programming , 1994, Oper. Res..
[48] Robert E. Bixby,et al. Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex Methods , 1992, Oper. Res..
[49] Alan Tucker,et al. A Note on Convergence of the Ford-Fulkerson Flow Algorithm , 1977, Math. Oper. Res..
[50] T. L. Saaty,et al. The computational algorithm for the parametric objective function , 1955 .
[51] Nimrod Megiddo,et al. On Finding Primal- and Dual-Optimal Bases , 1991, INFORMS J. Comput..
[52] C. R. Sergeant. Linear and Combinatorial Programming , 1977 .
[53] Nimrod Megiddo,et al. A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension , 1985, JACM.