A perspective on MXenes: Their synthesis, properties, and recent applications

Since 2011, after the discovery of new ceramic two-dimensional materials called MXenes, the attention has been focused on their unique properties and various applications, from energy storage to nanomedicine. We present a brief perspective article of the properties of MXenes, alongside the most recent studies regarding their applications on energy, environment, wireless communications, and biotechnology. Future needs regarding the current knowledge about MXenes are also discussed in order to fully understand their nature and overcome the challenges that have restricted their use.

[1]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[2]  Ihsanullah Ihsanullah,et al.  Potential of MXenes in Water Desalination: Current Status and Perspectives , 2020, Nano-micro letters.

[3]  Bobby G. Sumpter,et al.  Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals , 2013 .

[4]  Yury Gogotsi,et al.  The Rise of MXenes. , 2019, ACS nano.

[5]  Zhengming Sun,et al.  Progress in research and development on MAX phases: a family of layered ternary compounds , 2011 .

[6]  V. Dusastre,et al.  Materials for sustainable energy : a collection of peer-reviewed research and review articles from Nature Publishing Group , 2010 .

[7]  Micah J. Green,et al.  Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution , 2017 .

[8]  Ning Wang,et al.  Rational Design of Flexible Two-Dimensional MXenes with Multiple Functionalities. , 2019, Chemical reviews.

[9]  Yury Gogotsi,et al.  Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media , 2014 .

[10]  Leopoldo Molina-Luna,et al.  Adding a New Member to the MXene Family: Synthesis, Structure, and Electrocatalytic Activity for the Hydrogen Evolution Reaction of V4C3Tx , 2018, ACS Applied Energy Materials.

[11]  Silvia G. Prolongo,et al.  Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins , 2014 .

[12]  Atsuo Yamada,et al.  MXene as a Charge Storage Host. , 2018, Accounts of chemical research.

[13]  Dashuai Wang,et al.  A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of Ti3C2T2 MXene in Lithium-Sulfur Batteries. , 2019, ACS nano.

[14]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[15]  Krzysztof Tadyszak,et al.  Study on the magnetic properties of differently functionalized multilayered Ti3C2Tx MXenes and Ti-Al-C carbides , 2019, Applied Surface Science.

[16]  Feng Liu,et al.  Large-Gap Quantum Spin Hall State in MXenes: d-Band Topological Order in a Triangular Lattice. , 2016, Nano letters.

[17]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[18]  Weiqun Shi,et al.  Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. , 2017, ACS nano.

[19]  Yoshiyuki Kawazoe,et al.  Large-gap Two-dimensional Topological Insulator in Oxygen Functionalized MXene , 2015, 1507.01172.

[20]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[21]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[22]  Mohammad Khazaei,et al.  Electronic properties and applications of MXenes: a theoretical review , 2017, 1702.07442.

[23]  Haihui Wang,et al.  Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries , 2010 .

[24]  Paras N. Prasad,et al.  Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications , 2020, Physics Reports.

[25]  Golibjon Berdiyorov,et al.  Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations , 2016 .

[26]  Arkady V. Krasheninnikov,et al.  Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles , 2013, 1308.5061.

[27]  Sang-Hoon Park,et al.  Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes) , 2017 .

[28]  Jianbo Cheng,et al.  The band gap modulation of monolayer Ti2CO2 by strain , 2015 .

[29]  Bingxin Wang,et al.  Carbon dioxide adsorption of two-dimensional carbide MXenes , 2018, Journal of Advanced Ceramics.

[30]  Victor M. Fuenzalida,et al.  Catalytic performance of 2D-Mxene nano-sheets for the hydrodeoxygenation (HDO) of lignin-derived model compounds , 2020 .

[31]  Fu Liu,et al.  Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves , 2020, Nature Communications.

[32]  Salvatore Grasso,et al.  Attempts to synthesise quaternary MAX phases (Zr,M)2AlC and Zr2(Al,A)C as a way to approach Zr2AlC , 2016 .

[33]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[34]  Xin Zhang,et al.  Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination , 2015 .

[35]  Jian He,et al.  Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes , 2015 .

[36]  Chenhui Yang,et al.  A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2 , 2015 .

[37]  A. L. Ivanovskii,et al.  Graphene-like transition-metal nanocarbides and nanonitrides , 2013 .

[38]  Liang Cheng,et al.  2D Nanomaterials for Cancer Theranostic Applications , 2019, Advanced materials.

[39]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[40]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[41]  Minshen Zhu,et al.  Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging , 2017, Advanced materials.

[42]  Qiang Gao,et al.  Magnetic i-MXenes: a new class of multifunctional two-dimensional materials. , 2019, Nanoscale.

[43]  Menglong Zhao,et al.  2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics , 2018, Theranostics.

[44]  Martin Magnuson,et al.  Chemical bonding in carbide MXene nanosheets , 2017, 1803.07502.

[45]  Udo Schwingenschlögl,et al.  Nb‐based MXenes for Li‐ion battery applications , 2015 .

[46]  Rajeev Ahuja,et al.  Modelling high-performing batteries with Mxenes: The case of S-functionalized two-dimensional nitride Mxene electrode , 2019, Nano Energy.

[47]  Narasimalu Srikanth,et al.  Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study , 2016 .

[48]  Neng Li,et al.  Surface and Heterointerface Engineering of 2D MXenes and Their Nanocomposites: Insights into Electro- and Photocatalysis , 2019, Chem.

[49]  Weiwei Sun,et al.  Double transition metal MXenes with wide band gaps and novel magnetic properties. , 2018, Nanoscale.

[50]  Yury Gogotsi,et al.  Bending Rigidity of Two-Dimensional Titanium Carbide (MXene) Nanoribbons: A Molecular Dynamics Study , 2018 .

[51]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[52]  Udo Schwingenschlögl,et al.  Heterostructures of transition metal dichalcogenides , 2015 .

[53]  Denis Horlait,et al.  Synthesis and DFT investigation of new bismuth-containing MAX phases , 2016, Scientific Reports.

[54]  Pierre-Louis Taberna,et al.  Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes , 2016 .

[55]  Meilin Liu,et al.  Unraveling the Nature of Anomalously Fast Energy Storage in T-Nb2O5. , 2017, Journal of the American Chemical Society.

[56]  Simon Kurasch,et al.  Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. , 2012, Physical review letters.

[57]  Lilia Boeri,et al.  Manipulating the mechanical properties of Ti2C MXene: Effect of substitutional doping , 2017 .

[58]  Liang Dong,et al.  Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes. , 2017, The journal of physical chemistry letters.

[59]  Denis Horlait,et al.  Synthesis and physical properties of (Zr1−x,Tix)3AlC2 MAX phases , 2017 .

[60]  Danling Wang,et al.  Titanium carbide MXene: Synthesis, electrical and optical properties and their applications in sensors and energy storage devices , 2019, Nanomaterials and Nanotechnology.

[61]  Z. Gan,et al.  Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. , 2016, Nanoscale.

[62]  Shi-gang Lu,et al.  Recent Advances in Layered Ti3 C2 Tx MXene for Electrochemical Energy Storage. , 2018, Small.

[63]  Xiaokang Hu,et al.  A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances , 2017, Nature Communications.

[64]  Liang Zhao,et al.  Applications of 2D MXenes in energy conversion and storage systems. , 2019, Chemical Society reviews.

[65]  Cem Sevik,et al.  First-principles exploration of superconductivity in MXenes. , 2020, Nanoscale.

[66]  Atsuo Yamada,et al.  Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors , 2015, Nature Communications.

[67]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[68]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[69]  Shayan Seyedin,et al.  Facile Solution Processing of Stable MXene Dispersions towards Conductive Composite Fibers , 2019, Global challenges.

[70]  Feridun Ay,et al.  Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation , 2016, Nanotechnology.

[71]  Yury Gogotsi,et al.  Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). , 2016, Nanoscale.

[72]  D. Fan,et al.  Broadband Nonlinear Photonics in Few‐Layer MXene Ti3C2Tx (T = F, O, or OH) , 2018 .

[73]  Xing Zhong,et al.  Mo2TiC2 MXene: A Promising Catalyst for Electrocatalytic Ammonia Synthesis , 2020 .

[74]  Qiang Huang,et al.  Recent progress and advances in the environmental applications of MXene related materials. , 2020, Nanoscale.

[75]  Yury Gogotsi,et al.  Porous Two‐Dimensional Transition Metal Carbide (MXene) Flakes for High‐Performance Li‐Ion Storage , 2016 .

[76]  Arvind Varma,et al.  Electrochemical performance of MXenes as K-ion battery anodes. , 2017, Chemical communications.

[77]  Ingemar Persson,et al.  Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[78]  T. Wojciechowski,et al.  Multilayered stable 2D nano-sheets of Ti2NTx MXene: synthesis, characterization, and anticancer activity , 2019, Journal of Nanobiotechnology.

[79]  Liang Dong,et al.  Tunable Magnetism and Transport Properties in Nitride MXenes. , 2017, ACS nano.

[80]  Yury Gogotsi,et al.  Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes) , 2018, Advanced materials.

[81]  Jagjit Nanda,et al.  Multimodality of Structural, Electrical, and Gravimetric Responses of Intercalated MXenes to Water. , 2017, ACS nano.

[82]  Yury Gogotsi,et al.  Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes) , 2015, Nanotechnology.

[83]  Shixuan Li,et al.  W‐Based Atomic Laminates and Their 2D Derivative W1.33C MXene with Vacancy Ordering , 2018, Advanced materials.

[84]  Michael E. Fitzpatrick,et al.  Experimental synthesis and density functional theory investigation of radiation tolerance of Zr3(Al1‐xSix)C2 MAX phases , 2017 .

[85]  Michel W. Barsoum,et al.  MXenes: An Introduction of Their Synthesis, Select Properties, and Applications , 2019, Trends in Chemistry.

[86]  Jian Zhou,et al.  Half-Metallic Ferromagnetism and Surface Functionalization-Induced Metal-Insulator Transition in Graphene-like Two-Dimensional Cr2C Crystals. , 2015, ACS applied materials & interfaces.

[87]  Bahram Nabet,et al.  Beyond Gold: Spin‐Coated Ti3C2‐Based MXene Photodetectors , 2019, Advanced materials.

[88]  Boon Siang Yeo,et al.  Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route , 2015 .

[89]  Xinliang Li,et al.  Environmental Stability of MXenes as Energy Storage Materials , 2019, Front. Mater..

[90]  Xiaojun Wu,et al.  Mn2C monolayer: a 2D antiferromagnetic metal with high Néel temperature and large spin-orbit coupling. , 2016, Nanoscale.

[91]  Dibyajyoti Ghosh,et al.  Effects of point defects on the magnetoelectronic structures of MXenes from first principles. , 2018, Physical chemistry chemical physics : PCCP.

[92]  Xiaogang Han,et al.  Characteristics of Ti3C2X–Chitosan Films with Enhanced Mechanical Properties , 2017, Front. Energy Res..

[93]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[94]  Pierre-Louis Taberna,et al.  High capacitance of surface-modified 2D titanium carbide in acidic electrolyte , 2014 .

[95]  Yury Gogotsi,et al.  Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers , 2018, Science Advances.

[96]  A. Rousset,et al.  Specific surface area of carbon nanotubes and bundles of carbon nanotubes , 2001 .

[97]  Bruno Scrosati,et al.  An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. , 2014, Nano letters.

[98]  Ning Zhang,et al.  Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study , 2018, 2D Materials.

[99]  Haiying Du,et al.  Chalcogenated-Ti3C2X2 MXene (X = O, S, Se and Te) as a high-performance anode material for Li-ion batteries , 2020 .

[100]  Ning Kang,et al.  Large-area high-quality 2D ultrathin Mo2C superconducting crystals. , 2015, Nature materials.

[101]  Alexander L. Ivanovskii,et al.  Structural and Electronic Properties and Stability of MXenes Ti2C and Ti3C2 Functionalized by Methoxy Groups , 2013 .

[102]  K. Dandekar,et al.  2D titanium carbide (MXene) for wireless communication , 2018, Science Advances.

[103]  Husam N. Alshareef,et al.  Thermoelectric Properties of Two-Dimensional Molybdenum-Based MXenes , 2017 .

[104]  Guo Wang A Theoretical Prediction on the Intrinsic Half-Metallicity in the Surface-Oxygen-Passivated Cr2N MXene , 2016 .

[105]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[106]  Yury Gogotsi,et al.  Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. , 2016, Nanoscale horizons.

[107]  Lars Hultman,et al.  Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering , 2017, Science Advances.

[108]  Igor Krupa,et al.  2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties , 2017, PloS one.

[109]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[110]  Dae Sung Lee,et al.  Two-Dimensional Ti3C2Tx MXene Nanosheets for Efficient Copper Removal from Water , 2017 .

[111]  Jean-Marie Tarascon,et al.  Is lithium the new gold? , 2010, Nature chemistry.

[112]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[113]  Decai Huang,et al.  Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets , 2016 .

[114]  Udo Schwingenschlögl,et al.  Strain engineering of WS2, WSe2, and WTe2 , 2014 .

[115]  Udo Schwingenschlögl,et al.  S-functionalized MXenes as electrode materials for Li-ion batteries , 2016 .

[116]  Di Zhang,et al.  Fluorine-Free Synthesis of High-Purity Ti3 C2 Tx (T=OH, O) via Alkali Treatment. , 2018, Angewandte Chemie.

[117]  Weiwei Sun,et al.  Computational Discovery and Design of MXenes for Energy Applications: Status, Successes, and Opportunities. , 2019, ACS applied materials & interfaces.

[118]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[119]  J. Zou,et al.  Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. , 2017, ACS applied materials & interfaces.

[120]  Youwei Wang,et al.  Theranostic 2D Tantalum Carbide (MXene) , 2018, Advanced materials.

[121]  Kailun Yao,et al.  Monolayer MXenes: promising half-metals and spin gapless semiconductors. , 2016, Nanoscale.

[122]  Mohammad Khazaei,et al.  Topological insulators in the ordered double transition metals M 2 ′ M ″ C 2 MXenes ( M ′ = Mo , W; M ″ = Ti , Zr, Hf) , 2016, 1609.03649.

[123]  Seong-Ho Yoon,et al.  Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries , 2013 .

[124]  Qiang Zhang,et al.  A Three‐Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors , 2010, Advanced materials.

[125]  Peng Wang,et al.  MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. , 2017, ACS nano.

[126]  Artur Dybko,et al.  Future Applications of MXenes in Biotechnology, Nanomedicine, and Sensors. , 2020, Trends in biotechnology.

[127]  Han Lin,et al.  Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. , 2017, ACS nano.