Algorithm capability and applications in artificial intelligence

xii, 136 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.

[1]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[2]  Vladimir Lifschitz,et al.  Answer set programming and plan generation , 2002, Artif. Intell..

[3]  Wolfgang Faber,et al.  The DLV system for knowledge representation and reasoning , 2002, TOCL.

[4]  Georg Gottlob,et al.  Complexity Results for Nonmonotonic Logics , 1992, J. Log. Comput..

[5]  Katsumi Inoue,et al.  Lemma Reusing for SAT based Planning and Scheduling , 2006, ICAPS.

[6]  Enrico Pontelli,et al.  Planning with preferences using logic programming , 2004, Theory and Practice of Logic Programming.

[7]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[8]  Fangzhen Lin,et al.  ASSAT: computing answer sets of a logic program by SAT solvers , 2002, Artif. Intell..

[9]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[10]  Victor W. Marek,et al.  Stable models and an alternative logic programming paradigm , 1998, The Logic Programming Paradigm.

[11]  Tom Bylander,et al.  Complexity Results for Planning , 1991, IJCAI.

[12]  Marco Schaerf,et al.  An Algorithm to Evaluate Quantified Boolean Formulae , 1998, AAAI/IAAI.

[13]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[14]  Timo Soininen,et al.  Extending and implementing the stable model semantics , 2000, Artif. Intell..

[15]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[16]  Yoav Shoham,et al.  A semantical approach to nonmonotonic logics , 1987, LICS 1987.

[17]  Judea Pearl,et al.  Qualitative Probabilities for Default Reasoning, Belief Revision, and Causal Modeling , 1996, Artif. Intell..

[18]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[19]  Ilkka Niemelä,et al.  GNT - A Solver for Disjunctive Logic Programs , 2004, LPNMR.

[20]  Drew McDermott,et al.  Non-Monotonic Logic I , 1987, Artif. Intell..

[21]  Matthew L. Ginsberg,et al.  Readings in Nonmonotonic Reasoning , 1987, AAAI 1987.

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  Marco Schaerf,et al.  A Survey of Complexity Results for Nonmonotonic Logics , 1993, J. Log. Program..

[24]  Sharad Malik,et al.  The Quest for Efficient Boolean Satisfiability Solvers , 2002, CAV.

[25]  Robert C. Moore Semantical Considerations on Nonmonotonic Logic , 1985, IJCAI.

[26]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[27]  Mark W. Krentel Generalizations of Opt P to the Polynomial Hierarchy , 1992, Theor. Comput. Sci..

[28]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[29]  Marco Schaerf,et al.  The complexity of model checking for propositional default logics , 2005, Data Knowl. Eng..

[30]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[31]  Enrico Giunchiglia,et al.  Solving Optimization Problems with DLL , 2006, ECAI.

[32]  Georg Gottlob,et al.  Complexity results for some eigenvector problems , 2000, Int. J. Comput. Math..

[33]  James M. Crawford,et al.  Symmetry-Breaking Predicates for Search Problems , 1996, KR.

[34]  Yuliya Lierler,et al.  SAT-Based Answer Set Programming , 2004, AAAI.

[35]  Jonathan Stillman,et al.  The Complexity of Propositional Default Logics , 1992, AAAI.

[36]  Enrico Giunchiglia,et al.  Planning as Satisfiability with Preferences , 2007, AAAI.

[37]  Ilkka Niemelä,et al.  Logic programs with stable model semantics as a constraint programming paradigm , 1999, Annals of Mathematics and Artificial Intelligence.

[38]  Larry J. Stockmeyer,et al.  Classifying the computational complexity of problems , 1987, The Journal of Symbolic Logic.

[39]  Jörg Rothe,et al.  Relating Partial and Complete Solutions and the Complexity of Computing Smallest Solutions , 2001, ICTCS.

[40]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[41]  Thomas Lukasiewicz,et al.  Default reasoning from conditional knowledge bases: Complexity and tractable cases , 2000, Artif. Intell..

[42]  Christopher B. Wilson,et al.  Automating pseudo-boolean inference within a dpll framework , 2004 .

[43]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[44]  Mark W. Krentel The Complexity of Optimization Problems , 1988, J. Comput. Syst. Sci..

[45]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[46]  Jinbo Huang A Case for Simple SAT Solvers , 2007, CP.

[47]  Bart Selman,et al.  Encoding Plans in Propositional Logic , 1996, KR.

[48]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.