Inhibitory Gradient along the Dorsoventral Axis in the Medial Entorhinal Cortex

Local inhibitory microcircuits in the medial entorhinal cortex (MEC) and their role in network activity are little investigated. Using a combination of electrophysiological, optical, and morphological circuit analysis tools, we find that layer II stellate cells are embedded in a dense local inhibitory microcircuit. Specifically, we report a gradient of inhibitory inputs along the dorsoventral axis of the MEC, with the majority of this local inhibition arising from parvalbumin positive (PV+) interneurons. Finally, the gradient of PV+ fibers is accompanied by a gradient in the power of extracellular network oscillations in the gamma range, measured both in vitro and in vivo. The reported differences in the inhibitory microcircuitry in layer II of the MEC may therefore have a profound functional impact on the computational working principles at different locations of the entorhinal network and influence the input pathways to the hippocampus.

[1]  G. Buzsáki,et al.  Intrinsic Circuit Organization and Theta–Gamma Oscillation Dynamics in the Entorhinal Cortex of the Rat , 2010, The Journal of Neuroscience.

[2]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[3]  A. Alonso,et al.  Neuronal sources of theta rhythm in the entorhinal cortex of the rat , 1987, Experimental Brain Research.

[4]  Miles A Whittington,et al.  Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. , 2004, Annual review of neuroscience.

[5]  Benjamin A. Dunn,et al.  Recurrent inhibitory circuitry as a mechanism for grid formation , 2013, Nature Neuroscience.

[6]  Lindsey L. Glickfeld,et al.  Complementary Modulation of Somatic Inhibition by Opioids and Cannabinoids , 2008, The Journal of Neuroscience.

[7]  M. Witter,et al.  Parvalbumin-immunoreactive neurons in the entorhinal cortex of the rat: localization, morphology, connectivity and ultrastructure , 1995, Journal of neurocytology.

[8]  Jozsi Z. Jalics,et al.  NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex , 2008, Proceedings of the National Academy of Sciences.

[9]  M. V. Rossum,et al.  Feedback Inhibition Enables Theta-Nested Gamma Oscillations and Grid Firing Fields , 2013, Neuron.

[10]  T. Kosaka,et al.  The distribution of two calcium binding proteins, calbindin D-28K and parvalbumin, in the entorhinal cortex of the adult mouse , 1996, Neuroscience Research.

[11]  Christian Leibold,et al.  A novel control software that improves the experimental workflow of scanning photostimulation experiments , 2008, Journal of Neuroscience Methods.

[12]  G. Buzsáki,et al.  Traveling Theta Waves along the Entire Septotemporal Axis of the Hippocampus , 2012, Neuron.

[13]  J. Huguenard,et al.  Robust Short-Latency Perisomatic Inhibition onto Neocortical Pyramidal Cells Detected by Laser-Scanning Photostimulation , 2009, The Journal of Neuroscience.

[14]  M. Brecht,et al.  Microcircuits of Functionally Identified Neurons in the Rat Medial Entorhinal Cortex , 2011, Neuron.

[15]  G. Buzsáki,et al.  Distinct Representations and Theta Dynamics in Dorsal and Ventral Hippocampus , 2010, The Journal of Neuroscience.

[16]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[17]  I. Soltesz,et al.  Ivy and Neurogliaform Interneurons Are a Major Target of μ-Opioid Receptor Modulation , 2011, The Journal of Neuroscience.

[18]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[19]  C. Leibold,et al.  Analysis of Excitatory Microcircuitry in the Medial Entorhinal Cortex Reveals Cell-Type-Specific Differences , 2010, Neuron.

[20]  Charlotte N. Boccara,et al.  Grid cells in pre- and parasubiculum , 2010, Nature Neuroscience.

[21]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[22]  Michael E Hasselmo,et al.  Knock-Out of HCN1 Subunit Flattens Dorsal–Ventral Frequency Gradient of Medial Entorhinal Neurons in Adult Mice , 2009, The Journal of Neuroscience.

[23]  H. Gundersen,et al.  Unbiased stereological estimation of the number of neurons in the human hippocampus , 1990, The Journal of comparative neurology.

[24]  D. Schmitz,et al.  GluK2-Mediated Excitability within the Superficial Layers of the Entorhinal Cortex , 2009, PloS one.

[25]  Xiaoming Jin,et al.  Recurrent Circuits in Layer II of Medial Entorhinal Cortex in a Model of Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[26]  Lisa M. Giocomo,et al.  Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing , 2007, Science.

[27]  Lisa M. Giocomo,et al.  Grid Cells Use HCN1 Channels for Spatial Scaling , 2011, Cell.

[28]  A. Lörincz,et al.  Physiological patterns in the hippocampo‐entorhinal cortex system , 2000, Hippocampus.

[29]  Fiona E. N. LeBeau,et al.  Region-Specific Reduction in Entorhinal Gamma Oscillations and Parvalbumin-Immunoreactive Neurons in Animal Models of Psychiatric Illness , 2006, The Journal of Neuroscience.

[30]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[31]  M. Nolan,et al.  Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing Fields , 2008, Neuron.

[32]  I. Soltesz,et al.  Target-selective GABAergic control of entorhinal cortex output , 2010, Nature Neuroscience.

[33]  R. S. Jones,et al.  Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro , 2000, Neuroscience.

[34]  Diana L. Pettit,et al.  Asymmetric rostro-caudal inhibition in the primary olfactory cortex , 2010, Nature Neuroscience.

[35]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[36]  A. Alonso,et al.  Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. , 1993, Journal of neurophysiology.

[37]  Hysell V. Oviedo,et al.  The functional asymmetry of auditory cortex is reflected in the organization of local cortical circuits , 2010, Nature Neuroscience.

[38]  Christian Leibold,et al.  Detection of input sites in scanning photostimulation data based on spatial correlations , 2010, Journal of Neuroscience Methods.

[39]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[40]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[41]  M. Whittington,et al.  Gamma Oscillations Induced by Kainate Receptor Activation in the Entorhinal Cortex In Vitro , 2003, The Journal of Neuroscience.

[42]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.