Intelligent simulation tools for mining large scientific data sets

This paper describes problems, challenges, and opportunities forintelligent simulation of physical systems. Prototype intelligent simulation tools have been constructed for interpreting massive data sets from physical fields and for designing engineering systems. We identify the characteristics of intelligent simulation and describe several concrete application examples. These applications, which include weather data interpretation, distributed control optimization, and spatio-temporal diffusion-reaction pattern analysis, demonstrate that intelligent simulation tools are indispensable for the rapid prototyping of application programs in many challenging scientific and engineering domains.

[1]  P. Hartman Ordinary Differential Equations , 1965 .

[2]  Kenneth Yip Reasoning about Fluid Motion I: Finding Structures , 1995, IJCAI.

[3]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[4]  E. Bradley,et al.  Phase-space control system design , 1993, IEEE Control Systems.

[5]  S. Ullman Visual routines , 1984, Cognition.

[6]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[7]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[8]  Chris Bailey-Kellogg,et al.  Spatial Aggregation: Language and Applications , 1996, AAAI/IAAI, Vol. 1.

[9]  Chris Bailey-Kellogg,et al.  Qualitative Analysis of Distributed Physical Systems with Applications to Control Synthesis , 1998, AAAI/IAAI.

[10]  Christian Freksa,et al.  Qualitative spatial reasoning , 1990, Forschungsberichte, TU Munich.

[11]  Chris Bailey-Kellogg,et al.  Influence-Based Model Decomposition , 1999, AAAI/IAAI.

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  Shuji Doshita,et al.  Automated Phase Portrait Analysis by Integrating Qualitative and Quantitative Analysis , 1991, AAAI.

[14]  Benjamin Kuipers,et al.  A Compositional Modeling Language , 1996 .

[15]  P. Pandurang Nayak,et al.  Immobile Robots AI in the New Millennium , 1996, AI Mag..

[16]  Elisha Sacks,et al.  Automatic Analysis of One-Parameter Planar Ordinary Differential Equations by Intelligent Numeric Simulation , 1991, Artif. Intell..

[17]  Feng Zhao,et al.  Spatial Aggregation: Theory and Applications , 1996, J. Artif. Intell. Res..

[18]  Feng Zhao,et al.  Extracting and Representing Qualitative Behaviors of Complex Systems in Phase Spaces , 1991, IJCAI.

[19]  N. Hari Narayanan,et al.  Diagrammatic Reasoning: Cognitive and Computational Perspectives , 1995 .

[20]  David Haussler,et al.  KDD for Science Data Analysis: Issues and Examples , 1996, KDD.

[21]  Kenneth D. Forbus,et al.  Qualitative Spatial Reasoning: The Clock Project , 1991, Artif. Intell..

[22]  Beng Chin Ooi,et al.  Discovery of General Knowledge in Large Spatial Databases , 1993 .

[23]  Bruce Randall Donald,et al.  Algorithmic MEMS , 1998 .

[24]  K. Yip KAM: A System for Intelligently Guiding Numerical Experimentation by Computer , 1991 .

[25]  Deborah Silver,et al.  Visualizing features and tracking their evolution , 1994, Computer.

[26]  Brian Falkenhainer,et al.  Compositional Modeling: Finding the Right Model for the Job , 1991, Artif. Intell..

[27]  Gerald J. Sussman,et al.  Intelligence in scientific computing , 1989, CACM.

[28]  Leo Joskowicz,et al.  Computational Kinematics , 1991, Artif. Intell..