Exact algorithms for constraint satisfaction problems
暂无分享,去创建一个
[1] M. Ying. Another Quantum Lovasz Local Lemma , 2011 .
[2] Dominik Scheder,et al. Guided Search and a Faster Deterministic Algorithm for 3-SAT , 2008, LATIN.
[3] Paul Erdös,et al. Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..
[4] Stefan Szeider,et al. Minimal Unsatisfiable Formulas with Bounded Clause-Variable Difference are Fixed-Parameter Tractable , 2003, COCOON.
[5] Heidi Gebauer. Disproof of the Neighborhood Conjecture with Implications to SAT , 2009, ESA.
[6] Michael Luby,et al. A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.
[7] Jon M. Kleinberg,et al. A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..
[8] A. Scott,et al. The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma , 2003, cond-mat/0309352.
[9] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[10] Jean H. Gallier,et al. Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..
[11] Daniel Rolf,et al. 3-SAT in RTIME(O(1.32793n)) - Improving Randomized Local Search by Initializing Strings of 3-Clauses , 2003, Electron. Colloquium Comput. Complex..
[12] Aravind Srinivasan. Improved algorithmic versions of the Lovász Local Lemma , 2008, SODA '08.
[13] Amin Coja-Oghlan,et al. Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[14] Walter Kern,et al. An improved deterministic local search algorithm for 3-SAT , 2004, Theor. Comput. Sci..
[15] Kazuo Iwama,et al. Improved upper bounds for 3-SAT , 2004, SODA '04.
[16] Uwe Schöning. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems , 1999, FOCS.
[17] Tomás Feder,et al. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..
[18] Karthekeyan Chandrasekaran,et al. Deterministic algorithms for the Lovász Local Lemma , 2009, SODA '10.
[19] Richard M. Karp,et al. Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[20] Stefan Szeider,et al. Computing Unsatisfiable k-SAT Instances with Few Occurrences per Variable , 2005, SAT.
[21] A. Karimi,et al. Master‟s thesis , 2011 .
[22] P. Hall. On Representatives of Subsets , 1935 .
[23] Osamu Watanabe,et al. A Probabilistic 3-SAT Algorithm Further Improved , 2002, STACS.
[24] Zsolt Tuza,et al. One More Occurrence of Variables Makes Satisfiability Jump From Trivial to NP-Complete , 1993, SIAM J. Comput..
[25] Ewald Speckenmeyer,et al. Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..
[26] Paul Erdös,et al. On a Combinatorial Game , 1973, J. Comb. Theory A.
[27] József Beck,et al. An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.
[28] Michael E. Saks,et al. An improved exponential-time algorithm for k-SAT , 2005, JACM.
[29] Myassar Hazzouri,et al. Bachelor’s thesis , 2015 .
[30] N. Alon,et al. Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2004 .
[31] Wesley Pegden. An improvement of the Moser-Tardos algorithmic local lemma , 2011, ArXiv.
[32] Martin Schwarz,et al. A constructive commutative quantum Lovasz Local Lemma, and beyond , 2011, 1112.1413.
[33] C.H. Papadimitriou,et al. On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[34] Amin Coja-Oghlan. A Better Algorithm for Random k-SAT , 2010, SIAM J. Comput..
[35] Alan D. Sokal,et al. On Dependency Graphs and the Lattice Gas , 2006, Combinatorics, Probability and Computing.
[36] Craig A. Tovey,et al. A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..
[37] Noga Alon,et al. A Parallel Algorithmic Version of the Local Lemma , 1991, Random Struct. Algorithms.
[38] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[39] Stefan Szeider,et al. A Note on Unsatisfiable k-CNF Formulas with Few Occurrences per Variable , 2006, SIAM J. Discret. Math..
[40] Aldo Procacci,et al. Cluster Expansion for Abstract Polymer Models. New Bounds from an Old Approach , 2007 .
[41] Timon Hertli,et al. Improving PPSZ for 3-SAT using Critical Variables , 2010, STACS.
[42] Dominik Scheder,et al. A full derandomization of schöning's k-SAT algorithm , 2010, STOC.
[43] Pascal Schweitzer. Using the incompressibility method to obtain local lemma results for Ramsey-type problems , 2009, Inf. Process. Lett..
[44] Joel H. Spencer,et al. Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..
[45] Marek Karpinski,et al. Approximation Hardness and Satisfiability of Bounded Occurrence Instances of SAT , 2003, Electron. Colloquium Comput. Complex..
[46] Oliver Kullmann,et al. New Methods for 3-SAT Decision and Worst-case Analysis , 1999, Theor. Comput. Sci..
[47] Jochen Messner,et al. A Kolmogorov Complexity Proof of the Lovász Local Lemma for Satisfiability , 2011, COCOON.
[48] Pavel Pudlák,et al. Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[49] Olivier Dubois,et al. On the r, s-SAT satisfiability problem and a conjecture of Tovey , 1989, Discret. Appl. Math..
[50] Gábor Tardos,et al. The local lemma is tight for SAT , 2010, SODA '11.
[51] Bruce A. Reed,et al. Further algorithmic aspects of the local lemma , 1998, STOC '98.
[52] Robert E. Tarjan,et al. A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..