Exact algorithms for constraint satisfaction problems

The Boolean satisfiability problem (SAT) and its generalization to variables of higher arities – constraint satisfaction problems (CSP) – can arguably be called the most “natural” of all NP-complete problems. The present work is concerned with their algorithmic treatment. It consists of two parts. The first part investigates CSPs for which satisfiability follows from the famous Lovász Local Lemma. Since its discovery in 1975 by Paul Erdős and László Lovász, it has been known that CSPs without dense spots of interdependent constraints always admit a satisfying assignment. However, an iterative procedure to discover such an assignment was not available. We refine earlier attempts at making the Local Lemma algorithmic and finally present a polynomial time algorithm able to make almost all known applications constructive. In the second part, we leave behind the class of polynomial time tractable problems and instead investigate the randomized exponential time algorithm devised and analyzed by Uwe Schöning in 1999, which solves arbitrary clause satisfaction problems. Besides some new interesting perspectives on the algorithm, the main contribution of this part consist of a refinement of earlier approaches at derandomizing Schöning’s algorithm. We present a deterministic variant which losslessly reaches the performances of the randomized original.

[1]  M. Ying Another Quantum Lovasz Local Lemma , 2011 .

[2]  Dominik Scheder,et al.  Guided Search and a Faster Deterministic Algorithm for 3-SAT , 2008, LATIN.

[3]  Paul Erdös,et al.  Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..

[4]  Stefan Szeider,et al.  Minimal Unsatisfiable Formulas with Bounded Clause-Variable Difference are Fixed-Parameter Tractable , 2003, COCOON.

[5]  Heidi Gebauer Disproof of the Neighborhood Conjecture with Implications to SAT , 2009, ESA.

[6]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[7]  Jon M. Kleinberg,et al.  A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..

[8]  A. Scott,et al.  The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma , 2003, cond-mat/0309352.

[9]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[10]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[11]  Daniel Rolf,et al.  3-SAT in RTIME(O(1.32793n)) - Improving Randomized Local Search by Initializing Strings of 3-Clauses , 2003, Electron. Colloquium Comput. Complex..

[12]  Aravind Srinivasan Improved algorithmic versions of the Lovász Local Lemma , 2008, SODA '08.

[13]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[14]  Walter Kern,et al.  An improved deterministic local search algorithm for 3-SAT , 2004, Theor. Comput. Sci..

[15]  Kazuo Iwama,et al.  Improved upper bounds for 3-SAT , 2004, SODA '04.

[16]  Uwe Schöning A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems , 1999, FOCS.

[17]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[18]  Karthekeyan Chandrasekaran,et al.  Deterministic algorithms for the Lovász Local Lemma , 2009, SODA '10.

[19]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[20]  Stefan Szeider,et al.  Computing Unsatisfiable k-SAT Instances with Few Occurrences per Variable , 2005, SAT.

[21]  A. Karimi,et al.  Master‟s thesis , 2011 .

[22]  P. Hall On Representatives of Subsets , 1935 .

[23]  Osamu Watanabe,et al.  A Probabilistic 3-SAT Algorithm Further Improved , 2002, STACS.

[24]  Zsolt Tuza,et al.  One More Occurrence of Variables Makes Satisfiability Jump From Trivial to NP-Complete , 1993, SIAM J. Comput..

[25]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[26]  Paul Erdös,et al.  On a Combinatorial Game , 1973, J. Comb. Theory A.

[27]  József Beck,et al.  An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.

[28]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 2005, JACM.

[29]  Myassar Hazzouri,et al.  Bachelor’s thesis , 2015 .

[30]  N. Alon,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2004 .

[31]  Wesley Pegden An improvement of the Moser-Tardos algorithmic local lemma , 2011, ArXiv.

[32]  Martin Schwarz,et al.  A constructive commutative quantum Lovasz Local Lemma, and beyond , 2011, 1112.1413.

[33]  C.H. Papadimitriou,et al.  On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[34]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2010, SIAM J. Comput..

[35]  Alan D. Sokal,et al.  On Dependency Graphs and the Lattice Gas , 2006, Combinatorics, Probability and Computing.

[36]  Craig A. Tovey,et al.  A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..

[37]  Noga Alon,et al.  A Parallel Algorithmic Version of the Local Lemma , 1991, Random Struct. Algorithms.

[38]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[39]  Stefan Szeider,et al.  A Note on Unsatisfiable k-CNF Formulas with Few Occurrences per Variable , 2006, SIAM J. Discret. Math..

[40]  Aldo Procacci,et al.  Cluster Expansion for Abstract Polymer Models. New Bounds from an Old Approach , 2007 .

[41]  Timon Hertli,et al.  Improving PPSZ for 3-SAT using Critical Variables , 2010, STACS.

[42]  Dominik Scheder,et al.  A full derandomization of schöning's k-SAT algorithm , 2010, STOC.

[43]  Pascal Schweitzer Using the incompressibility method to obtain local lemma results for Ramsey-type problems , 2009, Inf. Process. Lett..

[44]  Joel H. Spencer,et al.  Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..

[45]  Marek Karpinski,et al.  Approximation Hardness and Satisfiability of Bounded Occurrence Instances of SAT , 2003, Electron. Colloquium Comput. Complex..

[46]  Oliver Kullmann,et al.  New Methods for 3-SAT Decision and Worst-case Analysis , 1999, Theor. Comput. Sci..

[47]  Jochen Messner,et al.  A Kolmogorov Complexity Proof of the Lovász Local Lemma for Satisfiability , 2011, COCOON.

[48]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[49]  Olivier Dubois,et al.  On the r, s-SAT satisfiability problem and a conjecture of Tovey , 1989, Discret. Appl. Math..

[50]  Gábor Tardos,et al.  The local lemma is tight for SAT , 2010, SODA '11.

[51]  Bruce A. Reed,et al.  Further algorithmic aspects of the local lemma , 1998, STOC '98.

[52]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..