Random fields and inverse problems in imaging

[1]  Basilis Gidas,et al.  Asymptotics of maximum likelihood estimators for the Curie-Weiss model , 1991 .

[2]  John W. Woods,et al.  Compound Gauss-Markov random fields for image estimation , 1991, IEEE Trans. Signal Process..

[3]  X. Guyon,et al.  On the choice of the regularization parameter: the case of binary images in the Bayesian restoration framework , 1991 .

[4]  Donald Geman,et al.  Boundary Detection by Constrained Optimization , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Arnoldo Frigessi,et al.  Parameter estimation for two-dimensional ising fields corrupted by noise , 1990 .

[6]  John W. Woods,et al.  Simulated annealing in compound Gaussian random fields , 1990, IEEE Trans. Inf. Theory.

[7]  P. Green Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.

[8]  Basilis Gidas,et al.  Parameter Estimation for Gibbs Distributions from Partially Observed Data , 1992 .

[9]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[10]  T. Chiang,et al.  A Limit Theorem for a Class of Inhomogeneous Markov Processes , 1989 .

[11]  Sridhar Lakshmanan,et al.  Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  John N. Tsitsiklis,et al.  Markov Chains with Rare Transitions and Simulated Annealing , 1989, Math. Oper. Res..

[13]  Basilis Gidas,et al.  A Renormalization Group Approach to Image Processing Problems , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[15]  David Green,et al.  Statistical inference for spatial processes , 1990 .

[16]  D. Stroock,et al.  Simulated annealing via Sobolev inequalities , 1988 .

[17]  Chiang Tzuu-Shuh,et al.  On the convergence rate of annealing processes , 1988 .

[18]  B. Chalmond Image restoration using an estimated Markov model , 1988 .

[19]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[20]  Rama Chellappa,et al.  Stochastic and deterministic algorithms for MAP texture segmentation , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[21]  J. W. Kay,et al.  On the Choice of Regularisation Parameter in Image Restoration , 1988, Pattern Recognition.

[22]  A. Lippman A Maximum Entropy Method for Expert System Construction , 1988 .

[23]  C. Acuna Parameter estimation for stochastic texture models , 1988 .

[24]  Stuart Geman,et al.  Stochastic Relaxation Methods for Image Restoration and Expert Systems , 1988 .

[25]  Benjamin B. Kimia,et al.  Deblurring Gaussian blur , 2015, Comput. Vis. Graph. Image Process..

[26]  T. Poggio,et al.  Visual Integration and Detection of Discontinuities: The Key Role of Intensity Edges , 1987 .

[27]  Chee Sun Won,et al.  A parallel image segmentation algorithm using relaxation with varying neighborhoods and its mapping to array processors , 1987, Computer Vision Graphics and Image Processing.

[28]  Jerry M. Mendel,et al.  Semi-Markov Random Field Models For Texture Synthesis , 1987, Other Conferences.

[29]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[30]  C. Hwang,et al.  Diffusion for global optimization in R n , 1987 .

[31]  Donald Geman,et al.  Stochastic model for boundary detection , 1987, Image Vis. Comput..

[32]  Jerry M. Mendel,et al.  Semi-Markov random field models for image segmentation , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[33]  D. K. Pickard Inference for Discrete Markov Fields: The Simplest Nontrivial Case , 1987 .

[34]  T. C. Brown,et al.  Edge Process Models for Regular and Irregular Pixels. , 1987 .

[35]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[36]  David B. Cooper,et al.  Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  John W. Woods,et al.  Image Estimation Using Doubly Stochastic Gaussian Random Field Models , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Pierre A. Devijver,et al.  Learning the parameters of a hidden Markov random field image model: A simple example , 1987 .

[40]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[41]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  S. Geman,et al.  Diffusions for global optimizations , 1986 .

[43]  David W. Murray,et al.  A parallel approach to the picture restoration algorithm of Geman and Geman on an SIMD machine , 1986, Image Vis. Comput..

[44]  H. Derin,et al.  Segmentation of textured images using Gibbs random fields , 1986 .

[45]  B. Ripley Statistics, images, and pattern recognition , 1986 .

[46]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[49]  D. Mitra,et al.  Convergence and finite-time behavior of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.

[50]  Bruce Hajek,et al.  A tutorial survey of theory and applications of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.

[51]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[52]  Songde Ma,et al.  Sequential synthesis of natural textures , 1985, Comput. Vis. Graph. Image Process..

[53]  B. Gidas Nonstationary Markov chains and convergence of the annealing algorithm , 1985 .

[54]  Haluk Derin,et al.  A new approach to parameter estimation for Gibbs random fields , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[55]  J. Marroquín Optimal Bayesian Estimators For Image Segmentation and Surface Reconstruction , 1985 .

[56]  R. Holley,et al.  Rapid Convergence to Equilibrium in One Dimensional Stochastic Ising Models , 1985 .

[57]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[58]  D. Titterington General structure of regularization procedures in image reconstruction , 1985 .

[59]  Donald Geman,et al.  Bayes Smoothing Algorithms for Segmentation of Binary Images Modeled by Markov Random Fields , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  J. Marroquín Surface Reconstruction Preserving Discontinuities , 1984 .

[62]  Andrew Blake,et al.  The least-disturbance principle and weak constraints , 1983, Pattern Recognit. Lett..

[63]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[64]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[66]  Stephen B. Vardeman,et al.  Contextual classification of multispectral image data , 1981, Pattern Recognit..

[67]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[68]  M. Hassner,et al.  The use of Markov Random Fields as models of texture , 1980 .

[69]  H. Trussell The relationship between image restoration by the maximum a posteriori method and a maximum entropy method , 1980 .

[70]  D. K. Pickard Asymptotic inference for an Ising lattice III. Non-zero field and ferromagnetic states , 1979, Journal of Applied Probability.

[71]  T M Cannon,et al.  Comparison of image restoration methods. , 1978, Applied optics.

[72]  J. Besag Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .

[73]  Bobby R. Hunt,et al.  Bayesian Methods in Nonlinear Digital Image Restoration , 1977, IEEE Transactions on Computers.

[74]  B. R. Hunt,et al.  Digital Image Restoration , 1977 .

[75]  Dean Isaacson,et al.  Markov Chains: Theory and Applications , 1976 .

[76]  D. Griffeath,et al.  Introduction to Random Fields , 2020, 2007.09660.

[77]  J. Besag,et al.  On the estimation and testing of spatial interaction in Gaussian lattice processes , 1975 .

[78]  John P. Moussouris Gibbs and Markov random systems with constraints , 1974 .

[79]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[80]  B. R. Hunt,et al.  The Application of Constrained Least Squares Estimation to Image Restoration by Digital Computer , 1973, IEEE Transactions on Computers.

[81]  A. Habibi Two-dimensional Bayesian estimate of images , 1972 .

[82]  B. Frieden Restoring with maximum likelihood and maximum entropy. , 1972, Journal of the Optical Society of America.

[83]  N. Nahi,et al.  Bayesian recursive image estimation. , 1972 .

[84]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[85]  S. E. Michaels,et al.  Discussion of Invited Papers , 1971 .

[86]  Martin Pincus,et al.  Letter to the Editor - A Monte Carlo Method for the Approximate Solution of Certain Types of Constrained Optimization Problems , 1970, Oper. Res..

[87]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[88]  R. Glauber Time‐Dependent Statistics of the Ising Model , 1963 .

[89]  D. Handscomb,et al.  Computation of Order Parameters in an Ising Lattice by the Monte Carlo Method , 1960 .

[90]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[91]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .