Double-channel language feature mining based model for video description

[1]  Esa Rahtu,et al.  A Better Use of Audio-Visual Cues: Dense Video Captioning with Bi-modal Transformer , 2020, BMVC.

[2]  Quan Quan,et al.  A multi-phase blending method with incremental intensity for training detection networks , 2020, The Visual Computer.

[3]  Fazhi He,et al.  A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation , 2019, Multimedia Tools and Applications.

[4]  Yilin Chen,et al.  A new haze removal approach for sky/river alike scenes based on external and internal clues , 2019, Multimedia Tools and Applications.

[5]  Xuelong Li,et al.  Describing Video With Attention-Based Bidirectional LSTM , 2019, IEEE Transactions on Cybernetics.

[6]  WangHanli,et al.  Rich Visual and Language Representation with Complementary Semantics for Video Captioning , 2019 .

[7]  Hanli Wang,et al.  Rich Visual and Language Representation with Complementary Semantics for Video Captioning , 2019, ACM Trans. Multim. Comput. Commun. Appl..

[8]  Tao Mei,et al.  Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning , 2019, AAAI.

[9]  Wei Liu,et al.  Spatio-Temporal Dynamics and Semantic Attribute Enriched Visual Encoding for Video Captioning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Xuelong Li,et al.  From Deterministic to Generative: Multimodal Stochastic RNNs for Video Captioning , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[11]  Heng Tao Shen,et al.  Video Captioning by Adversarial LSTM , 2018, IEEE Transactions on Image Processing.

[12]  Sam Kwong,et al.  Deep sequential fusion LSTM network for image description , 2018, Neurocomputing.

[13]  Qiang Liu,et al.  Neural Image Caption Generation with Weighted Training and Reference , 2018, Cognitive Computation.

[14]  Hui Chen,et al.  Show, Observe and Tell: Attribute-driven Attention Model for Image Captioning , 2018, IJCAI.

[15]  Tieniu Tan,et al.  M3: Multimodal Memory Modelling for Video Captioning , 2016, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[16]  Wei Liu,et al.  Reconstruction Network for Video Captioning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[17]  Qingming Huang,et al.  Less Is More: Picking Informative Frames for Video Captioning , 2018, ECCV.

[18]  Fazhi He,et al.  Service-Oriented Feature-Based Data Exchange for Cloud-Based Design and Manufacturing , 2018, IEEE Transactions on Services Computing.

[19]  Hui Chen,et al.  Temporal-Difference Learning With Sampling Baseline for Image Captioning , 2018, AAAI.

[20]  Xiangzhong Fang,et al.  Multimodal architecture for video captioning with memory networks and an attention mechanism , 2017, Pattern Recognit. Lett..

[21]  Heng Tao Shen,et al.  Video Captioning With Attention-Based LSTM and Semantic Consistency , 2017, IEEE Transactions on Multimedia.

[22]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[23]  Zhou Su,et al.  Weakly Supervised Dense Video Captioning , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Sam Kwong,et al.  G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition , 2017, Neurocomputing.

[25]  Rita Cucchiara,et al.  Hierarchical Boundary-Aware Neural Encoder for Video Captioning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Zhe Gan,et al.  Adaptive Feature Abstraction for Translating Video to Language , 2017, ICLR.

[27]  Tao Mei,et al.  Video Captioning with Transferred Semantic Attributes , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Wei Wang,et al.  Multimodal Memory Modelling for Video Captioning , 2016, ArXiv.

[30]  Jia Chen,et al.  Describing Videos using Multi-modal Fusion , 2016, ACM Multimedia.

[31]  Xirong Li,et al.  Early Embedding and Late Reranking for Video Captioning , 2016, ACM Multimedia.

[32]  Marcus Rohrbach,et al.  Multimodal Video Description , 2016, ACM Multimedia.

[33]  Jorma Laaksonen,et al.  Frame- and Segment-Level Features and Candidate Pool Evaluation for Video Caption Generation , 2016, ACM Multimedia.

[34]  Kate Saenko,et al.  Improving LSTM-based Video Description with Linguistic Knowledge Mined from Text , 2016, EMNLP.

[35]  Tao Mei,et al.  MSR-VTT: A Large Video Description Dataset for Bridging Video and Language , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Christopher Joseph Pal,et al.  Delving Deeper into Convolutional Networks for Learning Video Representations , 2015, ICLR.

[38]  Yi Yang,et al.  Hierarchical Recurrent Neural Encoder for Video Representation with Application to Captioning , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Wei Xu,et al.  Video Paragraph Captioning Using Hierarchical Recurrent Neural Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Chunhua Shen,et al.  What Value Do Explicit High Level Concepts Have in Vision to Language Problems? , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Tao Mei,et al.  Jointly Modeling Embedding and Translation to Bridge Video and Language , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Yoshua Bengio,et al.  Describing Multimedia Content Using Attention-Based Encoder-Decoder Networks , 2015, IEEE Transactions on Multimedia.

[43]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Marcus Rohrbach,et al.  A Multi-scale Multiple Instance Video Description Network , 2015, ArXiv.

[45]  Trevor Darrell,et al.  Sequence to Sequence -- Video to Text , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[46]  Christopher Joseph Pal,et al.  Describing Videos by Exploiting Temporal Structure , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[47]  Marcus Rohrbach,et al.  Translating Videos to Natural Language Using Deep Recurrent Neural Networks , 2014, NAACL.

[48]  C. Lawrence Zitnick,et al.  CIDEr: Consensus-based image description evaluation , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Trevor Darrell,et al.  Long-term recurrent convolutional networks for visual recognition and description , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[52]  Kate Saenko,et al.  Integrating Language and Vision to Generate Natural Language Descriptions of Videos in the Wild , 2014, COLING.

[53]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[54]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[55]  Trevor Darrell,et al.  YouTube2Text: Recognizing and Describing Arbitrary Activities Using Semantic Hierarchies and Zero-Shot Recognition , 2013, 2013 IEEE International Conference on Computer Vision.

[56]  Kate Saenko,et al.  Generating Natural-Language Video Descriptions Using Text-Mined Knowledge , 2013, AAAI.

[57]  William B. Dolan,et al.  Collecting Highly Parallel Data for Paraphrase Evaluation , 2011, ACL.

[58]  Yao Zhao,et al.  Multimodal Fusion for Video Search Reranking , 2010, IEEE Transactions on Knowledge and Data Engineering.

[59]  Alon Lavie,et al.  METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments , 2005, IEEvaluation@ACL.

[60]  Chin-Yew Lin,et al.  Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-Bigram Statistics , 2004, ACL.

[61]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[62]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.