Value-driven attentional priority signals in human basal ganglia and visual cortex

[1]  Steven Yantis,et al.  Attentional Bias for Non-drug Reward is Magnified in Addiction , 2014 .

[2]  Carol A. Seger,et al.  The visual corticostriatal loop through the tail of the caudate: circuitry and function , 2013, Front. Syst. Neurosci..

[3]  Steven Yantis,et al.  Attentional bias for nondrug reward is magnified in addiction. , 2013, Experimental and clinical psychopharmacology.

[4]  Senqing Qi,et al.  Neural correlates of reward-driven attentional capture in visual search , 2013, Brain Research.

[5]  Hyoung F. Kim,et al.  Why skill matters , 2013, Trends in Cognitive Sciences.

[6]  Shinya Yamamoto,et al.  Reward Value-Contingent Changes of Visual Responses in the Primate Caudate Tail Associated with a Visuomotor Skill , 2013, The Journal of Neuroscience.

[7]  B. Anderson A value-driven mechanism of attentional selection. , 2013, Journal of vision.

[8]  Hongbo Yu,et al.  Interaction between value and perceptual salience in value-driven attentional capture. , 2013, Journal of vision.

[9]  S. Yantis,et al.  Persistence of value-driven attentional capture. , 2013, Journal of experimental psychology. Human perception and performance.

[10]  J. Theeuwes,et al.  Reward grabs the eye: Oculomotor capture by rewarding stimuli , 2012, Vision Research.

[11]  Ilya E. Monosov,et al.  What and Where Information in the Caudate Tail Guides Saccades to Visual Objects , 2012, The Journal of Neuroscience.

[12]  J. Theeuwes,et al.  Top-down versus bottom-up attentional control: a failed theoretical dichotomy , 2012, Trends in Cognitive Sciences.

[13]  Steven Yantis,et al.  Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing , 2012, Attention, Perception, & Psychophysics.

[14]  Patryk A. Laurent,et al.  Generalization of value-based attentional priority , 2012, Visual cognition.

[15]  A. Song,et al.  The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. , 2012, Cerebral cortex.

[16]  Steven Yantis,et al.  Learned Value Magnifies Salience-Based Attentional Capture , 2011, PloS one.

[17]  Hongbin Zha,et al.  Structure-Sensitive Superpixels via Geodesic Distance , 2011, 2011 International Conference on Computer Vision.

[18]  M. Gluck,et al.  Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. , 2011, Learning & memory.

[19]  Patryk A. Laurent,et al.  Value-driven attentional capture , 2011, Proceedings of the National Academy of Sciences.

[20]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[21]  D. Hommer,et al.  Imaging brain response to reward in addictive disorders , 2011, Annals of the New York Academy of Sciences.

[22]  L. Chelazzi,et al.  Behavioral/systems/cognitive Reward Changes Salience in Human Vision via the Anterior Cingulate , 2022 .

[23]  Erik J. Peterson,et al.  Dissociating the contributions of independent corticostriatal systems to visual categorization learning through the use of reinforcement learning modeling and Granger causality modeling , 2010, NeuroImage.

[24]  Masaaki Kawahashi,et al.  Renovation of Journal of Visualization , 2010, J. Vis..

[25]  Christopher J. Peck,et al.  Reward Modulates Attention Independently of Action Value in Posterior Parietal Cortex , 2009, The Journal of Neuroscience.

[26]  J. Raymond,et al.  Selective Visual Attention and Motivation , 2009, Psychological science.

[27]  L. Chelazzi,et al.  Learning to Attend and to Ignore Is a Matter of Gains and Losses , 2009, Psychological science.

[28]  John T Serences,et al.  Value-Based Modulations in Human Visual Cortex , 2008, Neuron.

[29]  M. Field,et al.  Attentional bias in addictive behaviors: a review of its development, causes, and consequences. , 2008, Drug and alcohol dependence.

[30]  S. Yantis,et al.  Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. , 2007, Cerebral cortex.

[31]  Jacqueline Gottlieb,et al.  Integration of Exogenous Input into a Dynamic Salience Map Revealed by Perturbing Attention , 2006, The Journal of Neuroscience.

[32]  W. van den Brink,et al.  Attentional bias predicts heroin relapse following treatment. , 2006, Addiction.

[33]  M. Bear,et al.  Reward Timing in the Primary Visual Cortex , 2006, Science.

[34]  L. Chelazzi,et al.  Visual Selective Attention and the Effects of Monetary Rewards , 2006, Psychological science.

[35]  Andrew B. Leber,et al.  Coordination of Voluntary and Stimulus-Driven Attentional Control in Human Cortex , 2005, Psychological science.

[36]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[37]  J. O'Doherty,et al.  Reward representations and reward-related learning in the human brain: insights from neuroimaging , 2004, Current Opinion in Neurobiology.

[38]  J. Maunsell Neuronal representations of cognitive state: reward or attention? , 2004, Trends in Cognitive Sciences.

[39]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[40]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[41]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[42]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[43]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[44]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[45]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[46]  J. Hoffman,et al.  The role of visual attention in saccadic eye movements , 1995, Perception & psychophysics.

[47]  J. C. Johnston,et al.  Involuntary covert orienting is contingent on attentional control settings. , 1992, Journal of experimental psychology. Human perception and performance.

[48]  J. Theeuwes Perceptual selectivity for color and form , 1992, Perception & psychophysics.

[49]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[50]  J. C. Johnston,et al.  On the locus of visual selection: evidence from focused attention tasks. , 1990, Journal of experimental psychology. Human perception and performance.

[51]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[52]  S. Yantis,et al.  Abrupt visual onsets and selective attention: evidence from visual search. , 1984, Journal of experimental psychology. Human perception and performance.

[53]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.