Motion planning and control for Hilare pulling a trailer

This paper deals with motion planning and control for mobile robots. The various components of an integrated architecture for the mobile robot Hilare pulling a trailer are presented. The nonholonomic path planner is based on an original steering method accounting for the small-time controllability of the system. Then the path is transformed into a trajectory by including the dynamical constraints of the system (bounded velocity and bounded acceleration). Finally, the motion control is addressed. Due to the geometric transformation for a virtual robot, we show how to reduce the problem to a classical approach of trajectory tracking for a mobile robot moving forward only. The experimental results presented include two types of robot-trailer connection systems.

[1]  Linda Bushnell,et al.  An obstacle avoidance algorithm for a car pulling trailers with off-axle hitching , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[2]  J. Laumond,et al.  Multi-Level Path Planning for Nonholonomic Robots using Semi-Holonomic Subsystems , 1996 .

[3]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[4]  Ole Jakob Sørdalen,et al.  Conversion of the kinematics of a car with n trailers into a chained form , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[5]  R. M. DeSantis,et al.  Path-tracking for a Tractor-Trailer-like Robot , 1994, Int. J. Robotics Res..

[6]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[7]  Florent Lamiraux,et al.  Motion planning and control for Hilare pulling a trailer: experimental issues , 1997, Proceedings of International Conference on Robotics and Automation.

[8]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[9]  Mitsuji Sampei,et al.  Path Tracking Control of Car-Caravan Type Articulated Vehicles Using Nonlinear Control Theory , 1994 .

[10]  Giuseppe Oriolo,et al.  Stabilization via iterative state steering with application to chained-form systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[11]  J. Laumond Controllability of a multibody mobile robot , 1991 .

[12]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[13]  Hongyan Wang,et al.  Non-Uniform Discretization Approximations for Kinodynamic Motion Planning and its Applications , 1996 .

[14]  Marc Renaud,et al.  Time-optimal motions of robot manipulators including dynamics , 1992 .

[15]  Pierre Rouchon,et al.  Robust stabilization of flat and chained systems , 1995 .

[16]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[17]  S. Sekhavat,et al.  Topological Property of Trajectories Computed Inputs for Nonholonomic Chained Form , 1996 .

[18]  Pierre Ferbach,et al.  A method of progressive constraints for nonholonomic motion planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[19]  C. Samson Control of chained systems application to path following and time-varying point-stabilization of mobile robots , 1995, IEEE Trans. Autom. Control..

[20]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[21]  Florent Lamiraux,et al.  From Paths to Trajectories for Multi-body Mobile Robots , 1997, ISER.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  O. J. Sørdalen,et al.  Exponential stabilization of nonholonomic chained systems , 1995, IEEE Trans. Autom. Control..

[24]  Mitsuji Sampei,et al.  Arbitrary path tracking control of articulated vehicles using nonlinear control theory , 1995, IEEE Trans. Control. Syst. Technol..

[25]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[26]  Yasuhiro Masutani,et al.  Robot Motion Planning and Control for Moving Objects. , 1993 .

[27]  Claude Samson,et al.  Feedback control of a nonholonomic wheeled cart in Cartesian space , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[28]  R. M. H. Cheng,et al.  Synthesis of an optimal control law for path tracking in mobile robots , 1992, Autom..

[29]  Georges Giralt,et al.  An Integrated Navigation and Motion Control System for Autonomous Multisensory Mobile Robots , 1990, Autonomous Robot Vehicles.

[30]  Matthieu Herrb,et al.  Design of a modular architecture for autonomous robot , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[31]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[32]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[33]  Jean-Jacques E. Slotine,et al.  Improving the Efficiency of Time-Optimal Path-Following Algorithms , 1988, 1988 American Control Conference.

[34]  D. Normand-Cyrot,et al.  An introduction to motion planning under multirate digital control , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[35]  Florent Lamiraux,et al.  A practical approach to feedback control for a mobile robot with trailer , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[36]  S. Sastry,et al.  Exterior differential systems and nonholonomic motion planning , 1994 .

[37]  C. Samson,et al.  Application of Backstepping Techniques to the Time-varying Exponential Stabilization of Chained Form Systems Application of Backstepping Techniques to the Time-varying Exponential Stabilization of Chained Form Systems , 1996 .

[38]  Jean-Paul Laumond,et al.  Flatness and small-time controllability of multibody mobile robots: Application to motion planning , 1997 .

[39]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[40]  R. Murray,et al.  Trajectory generation for the N-trailer problem using Goursat normal form , 1995 .

[41]  Jean-Claude Latombe,et al.  Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[42]  Claude Samson,et al.  Velocity and torque feedback control of a nonholonomic cart , 1991 .

[43]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[44]  M. Fliess,et al.  Flatness, motion planning and trailer systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[45]  Mark H. Overmars,et al.  Multilevel Path Planning for Nonholonomic Robots Using Semiholonomic Subsystems , 1998, Int. J. Robotics Res..

[46]  Zvi Shiller,et al.  Dynamic motion planning of autonomous vehicles , 1991, IEEE Trans. Robotics Autom..

[47]  Florent Lamiraux Robots mobiles à remorque : de la planification de chemins à l'exécution de mouvements , 1997 .

[48]  Takashi Tsubouchi,et al.  A practical path and motion planner for a tractor-trailer robot , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[49]  John T. Wen,et al.  Trajectory tracking control of a car-trailer system , 1997, IEEE Trans. Control. Syst. Technol..

[50]  Jean-Baptiste Pomet Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .

[51]  Bruce Randall Donald,et al.  Kinodynamic motion planning , 1993, JACM.

[52]  Giuseppe Oriolo,et al.  Feedback control of a nonholonomic car-like robot , 1998 .

[53]  Claude Samson,et al.  Time-varying Feedback Stabilization of Car-like Wheeled Mobile Robots , 1993, Int. J. Robotics Res..

[54]  Richard M. Murray,et al.  EXPERIMENTAL COMPARISON OF TRAJECTORY TRACKERS FOR A CAR WITH TRAILERS , 1996 .