Maximum likelihood estimation of cascade point-process neural encoding models

Recent work has examined the estimation of models of stimulus-driven neural activity in which some linear filtering process is followed by a nonlinear, probabilistic spiking stage. We analyze the estimation of one such model for which this nonlinear step is implemented by a known parametric function; the assumption that this function is known speeds the estimation process considerably. We investigate the shape of the likelihood function for this type of model, give a simple condition on the nonlinearity ensuring that no non-global local maxima exist in the likelihood—leading, in turn, to efficient algorithms for the computation of the maximum likelihood estimator—and discuss the implications for the form of the allowed nonlinearities. Finally, we note some interesting connections between the likelihood-based estimators and the classical spike-triggered average estimator, discuss some useful extensions of the basic model structure, and provide two novel applications to physiological data.

[1]  Julian J. Bussgang,et al.  Crosscorrelation functions of amplitude-distorted gaussian signals , 1952 .

[2]  Y. Rinott On Convexity of Measures , 1976 .

[3]  R. W. Wedderburn,et al.  On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models , 1976 .

[4]  Shelby J. Haberman,et al.  Maximum Likelihood Estimates in Exponential Response Models , 1977 .

[5]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[6]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[7]  M. L. Eaton A characterization of spherical distributions , 1986 .

[8]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[9]  Ker-Chau Li,et al.  Regression Analysis Under Link Violation , 1989 .

[10]  Donald L. Snyder,et al.  Random Point Processes in Time and Space , 1991 .

[11]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[12]  Sanford Weisberg,et al.  ADAPTING FOR THE MISSING LINK , 1994 .

[13]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[14]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[15]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[16]  Anthony M. Zador,et al.  When is an Integrate-and-fire Neuron like a Poisson Neuron? , 1995, NIPS.

[17]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[18]  Claus-Peter Richter,et al.  Modeling stochastic spike train responses of neurons: an extended Wiener series analysis of pigeon auditory nerve fibers , 1997, Biological Cybernetics.

[19]  Pamela Reinagel,et al.  Decoding visual information from a population of retinal ganglion cells. , 1997, Journal of neurophysiology.

[20]  B. Knight,et al.  The Power Ratio and the Interval Map: Spiking Models and Extracellular Recordings , 1998, The Journal of Neuroscience.

[21]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[22]  Michael J. Berry,et al.  Refractoriness and Neural Precision , 1997, The Journal of Neuroscience.

[23]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[24]  Daniel S. Reich,et al.  The power ratio and the interval map: spiking models and extracellular data , 1998 .

[25]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[26]  J. Donoghue,et al.  Neuronal Interactions Improve Cortical Population Coding of Movement Direction , 1999, The Journal of Neuroscience.

[27]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[28]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[29]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[30]  Kathryn B. Laskey,et al.  Neural Coding: Higher-Order Temporal Patterns in the Neurostatistics of Cell Assemblies , 2000, Neural Computation.

[31]  Wulfram Gerstner,et al.  Noise in Integrate-and-Fire Neurons: From Stochastic Input to Escape Rates , 2000, Neural Computation.

[32]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[33]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[34]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[35]  R. Reid,et al.  Predicting Every Spike A Model for the Responses of Visual Neurons , 2001, Neuron.

[36]  Emery N. Brown,et al.  The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis , 2002, Neural Computation.

[37]  Paul H. E. Tiesinga,et al.  Attractor Reliability Reveals Deterministic Structure in Neuronal Spike Trains , 2002, Neural Computation.

[38]  Maneesh Sahani,et al.  Evidence Optimization Techniques for Estimating Stimulus-Response Functions , 2002, NIPS.

[39]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[40]  Tony J. Dodd,et al.  Identification of non-linear time series via kernels , 2002, Int. J. Syst. Sci..

[41]  L. Paninski Convergence Properties of Some Spike-Triggered Analysis Techniques , 2002 .

[42]  Duane Q. Nykamp,et al.  Reconstructing Stimulus-Driven Neural Networks from Spike Times , 2002, NIPS.

[43]  Anthony M. Zador,et al.  Spectro-Temporal Receptive Fields of Subthreshold Responses in Auditory Cortex , 2002, NIPS.

[44]  John P. Donoghue,et al.  Connecting cortex to machines: recent advances in brain interfaces , 2002, Nature Neuroscience.

[45]  S. Meagher Instant neural control of a movement signal , 2002 .

[46]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[47]  Ben Willmore,et al.  The Receptive-Field Organization of Simple Cells in Primary Visual Cortex of Ferrets under Natural Scene Stimulation , 2003, The Journal of Neuroscience.

[48]  H. Sebastian Seung,et al.  Permitted and Forbidden Sets in Symmetric Threshold-Linear Networks , 2003, Neural Computation.

[49]  Jerald D. Kralik,et al.  Chronic, multisite, multielectrode recordings in macaque monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Alex M. Andrew,et al.  Spiking Neuron Models: Single Neurons, Populations, Plasticity , 2003 .

[51]  Liam Paninski,et al.  Noise-driven adaptation: in vitro and mathematical analysis , 2003, Neurocomputing.

[52]  Wulfram Gerstner,et al.  Reducing Spike Train Variability: A Computational Theory Of Spike-Timing Dependent Plasticity , 2004, BNAIC.

[53]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[54]  Matthew A. Wilson,et al.  Dynamic Analyses of Information Encoding in Neural Ensembles , 2004, Neural Computation.

[55]  Eero P. Simoncelli,et al.  Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model , 2004, Neural Computation.

[56]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[57]  Eero P. Simoncelli,et al.  To appear in: The New Cognitive Neurosciences, 3rd edition Editor: M. Gazzaniga. MIT Press, 2004. Characterization of Neural Responses with Stochastic Stimuli , 2022 .

[58]  L. Paninski,et al.  Spatiotemporal tuning of motor cortical neurons for hand position and velocity. , 2004, Journal of neurophysiology.

[59]  A. Ng Feature selection, L1 vs. L2 regularization, and rotational invariance , 2004, Twenty-first international conference on Machine learning - ICML '04.

[60]  L. Paninski,et al.  Superlinear Population Encoding of Dynamic Hand Trajectory in Primary Motor Cortex , 2004, The Journal of Neuroscience.

[61]  Eero P. Simoncelli,et al.  Comparing integrate-and-fire models estimated using intracellular and extracellular data , 2005, Neurocomputing.