Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms

A formal framework for navigating a robot in a geometric terrain by an unknown set of obstacles is considered. Here the terrain model is not a priori known, but the robot is equipped with a sensor system (vision or touch) employed for the purpose of navigation. The focus is restricted to the non-heuristic algorithms which can be theoretically shown to be correct within a given framework of models for the robot, terrain and sensor system. These formulations, although abstract and simplified compared to real-life scenarios, provide foundations for practical systems by highlighting the underlying critical issues. First, the authors consider the algorithms that are shown to navigate correctly without much consideration given to the performance parameters such as distance traversed, etc. Second, they consider non-heuristic algorithms that guarantee bounds on the distance traversed or the ratio of the distance traversed to the shortest path length (computed if the terrain model is known). Then they consider the navigation of robots with very limited computational capabilities such as finite automata, etc.

[1]  Mathukumalli Vidyasagar,et al.  A new path planning algorithm for moving a point object amidst unknown obstacles in a plane , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[2]  Ming-Yang Kao,et al.  Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem , 1996, SODA '93.

[3]  A. K. C. Wong,et al.  Low-Level Learning for a Mobile Robot: Environment Model Acquisition , 1985, CAIA.

[4]  Nageswara S. V. Rao Robot navigation in unknown generalized polygonal terrains using a discrete scan sensor , 1991, Conference Proceedings 1991 IEEE International Conference on Systems, Man, and Cybernetics.

[5]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[6]  Nageswara S. V. Rao,et al.  Robot navigation in unknown generalized polygonal terrains using vision sensors , 1995, IEEE Trans. Syst. Man Cybern..

[7]  Xiaotie Deng,et al.  How to learn an unknown environment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[8]  Bala Kalyanasundaram,et al.  A Competitive Analysis of Nearest Neighbor Based Algorithms for Searching Unknown Scenes (Preliminary Version) , 1992, STACS.

[9]  R. Paul Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[10]  Richard Cole,et al.  Shape from Probing , 1987, J. Algorithms.

[11]  Yuval Rabani,et al.  Competitive algorithms for layered graph traversal , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[12]  Micha Sharir,et al.  Algorithmic motion planning in robotics , 1991, Computer.

[13]  Bala Kalyanasundaram,et al.  A Competitive Analysis of Algorithms for Searching Unknown Scenes , 1993, Comput. Geom..

[14]  Vladimir J. Lumelsky,et al.  Dynamic path planning in sensor-based terrain acquisition , 1990, IEEE Trans. Robotics Autom..

[15]  Vladimir J. Lumelsky Dynamic path planning for a planar articulated robot arm moving amidst unknown obstacles , 1987, Autom..

[16]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[17]  Vladimir J. Lumelsky,et al.  Algorithmic and complexity issues of robot motion in an uncertain environment , 1987, J. Complex..

[18]  Wei-Pand Chin,et al.  Shortest watchman routes in simple polygons , 1990, Discret. Comput. Geom..

[19]  Leonidas J. Guibas,et al.  Optimal shortest path queries in a simple polygon , 1987, SCG '87.

[20]  V. Lumelsky,et al.  Algorithmic issues of sensor-based robot motion planning , 1987, 26th IEEE Conference on Decision and Control.

[21]  S. Sitharama Iyengar,et al.  Robot navigation in unknown terrains using learned visibility graphs. Part I: The disjoint convex obstacle case , 1987, IEEE Journal on Robotics and Automation.

[22]  Nageswara,et al.  On Terrain Model Acquisition by a Point Robot Amidst Polyhedral Obstacles , 1981 .

[23]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[24]  Jon M. Kleinberg Algorithms for On-Line Navigation , 1992 .

[25]  Xuemin Lin,et al.  Performance Guarantees for Motion Planning with Temporal Uncertainty , 1993, Aust. Comput. J..

[26]  Manuel Blum,et al.  On the power of the compass (or, why mazes are easier to search than graphs) , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[27]  V. Lumelsky,et al.  Gross motion planning for a simple 3D articulated robot arm moving amidst unknown arbitrarily shaped obstacles , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[28]  Rolf Klein Walking an Unknown Street with Bounded Detour , 1991, Comput. Geom..

[29]  Vladimir J. Lumelsky,et al.  A Unified Methodology for Motion Planning with Uncertainty for 2D and 3D Two-Link Robot Arm Manipulators , 1990, Int. J. Robotics Res..

[30]  Nageswara S. V. Rao Algorithmic framework for learned robot navigation in unknown terrains , 1989, Computer.

[31]  JOHN MYLOPOULOS On the recognition of topological invariants by 4-way finite automata , 1972, Comput. Graph. Image Process..

[32]  Fred B. Schneider,et al.  A Theory of Graphs , 1993 .

[33]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[34]  Ricardo A. Baeza-Yates,et al.  Searching in the Plane , 1993, Inf. Comput..

[35]  Frank Harary,et al.  Graph Theory , 2016 .

[36]  C. Morawetz The Courant Institute of Mathematical Sciences , 1988 .

[37]  V. Lumelsky,et al.  Continuous Robot Motion Planning In Unknown Environment , 1986 .

[38]  L. Budach Automata and Labyrinths , 1978 .

[39]  Horst Müller,et al.  Endliche Automaten und Labyrinthe , 1971, J. Inf. Process. Cybern..

[40]  Isao Masuda,et al.  A new algorithm for robot curve-following amidst unknown obstacles, and a generalization of maze-searching , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[41]  M. Vidyasagar,et al.  Path planning for moving a point object amidst unknown obstacles in a plane: a new algorithm and a general theory for algorithm development , 1990, 29th IEEE Conference on Decision and Control.

[42]  Harold Abelson,et al.  Turtle geometry : the computer as a medium for exploring mathematics , 1983 .

[43]  Vladimir J. Lumelsky,et al.  Incorporating range sensing in the robot navigation function , 1990, IEEE Trans. Syst. Man Cybern..

[44]  M. W. Shields An Introduction to Automata Theory , 1988 .

[45]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[46]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[47]  Walter J. Savitch,et al.  Maze Recognizing Automata and Nondeterministic Tape Complexity , 1973, J. Comput. Syst. Sci..

[48]  Vladimir J. Lumelsky,et al.  A comparative study on the path length performance of maze-searching and robot motion planning algorithms , 1991, IEEE Trans. Robotics Autom..

[49]  Klemens Döpp Automaten in Labyrinthen I , 1971, J. Inf. Process. Cybern..

[50]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[51]  Lothar Budach,et al.  On the Solution of the Labyrinth Problem for Finite Automata , 1975, J. Inf. Process. Cybern..

[52]  Anupam N. Shah Pebble automata on arrays , 1974, Comput. Graph. Image Process..

[53]  Mihalis Yannakakis,et al.  Shortest Paths Without a Map , 1989, Theor. Comput. Sci..

[54]  Vladimir J. Lumelsky,et al.  Path planning among unknown obstacles: the case of a three-dimensional Cartesian arm , 1992, IEEE Trans. Robotics Autom..

[55]  Katsushi Inoue,et al.  Cyclic closure properties of automata on a two-dimensional tape , 1978, Inf. Sci..

[56]  Bala Kalyanasundaram,et al.  Constructing Competitive Tours from Local Information , 1993, Theor. Comput. Sci..

[57]  S. Sitharama Iyengar,et al.  A 'retraction' method for learned navigation in unknown terrains for a circular robot , 1991, IEEE Trans. Robotics Autom..

[58]  Vladimir J. Lumelsky,et al.  Continuous motion planning in unknown environment for a 3D cartesian robot arm , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[59]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[60]  Amos Fiat,et al.  On-Line Navigation in a Room , 1992, SODA.

[61]  Xiaotie Deng,et al.  Exploring an unknown graph , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[62]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[63]  Parag A. Pathak,et al.  Massachusetts Institute of Technology , 1964, Nature.

[64]  Mathukumalli Vidyasagar,et al.  Path planning for moving a point object amidst unknown obstacles in a plane: the universal lower bound on the worst path lengths and a classification of algorithms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[65]  Alfred M. Bruckstein,et al.  Two-dimensional robot navigation among unknown stationary polygonal obstacles , 1993, IEEE Trans. Robotics Autom..

[66]  Ivan E. Sutherland A Method for Solving Arbitrary-Wall Mazes by Computer , 1969, IEEE Transactions on Computers.

[67]  Azriel Rosenfeld,et al.  Connectivity in Digital Pictures , 1970, JACM.

[68]  V. Lumelsky,et al.  Dynamic path planning for a mobile automaton with limited information on the environment , 1986 .