Maximally Informative “Stimulus Energies” in the Analysis of Neural Responses to Natural Signals

The concept of feature selectivity in sensory signal processing can be formalized as dimensionality reduction: in a stimulus space of very high dimensions, neurons respond only to variations within some smaller, relevant subspace. But if neural responses exhibit invariances, then the relevant subspace typically cannot be reached by a Euclidean projection of the original stimulus. We argue that, in several cases, we can make progress by appealing to the simplest nonlinear construction, identifying the relevant variables as quadratic forms, or “stimulus energies.” Natural examples include non–phase–locked cells in the auditory system, complex cells in the visual cortex, and motion–sensitive neurons in the visual system. Generalizing the idea of maximally informative dimensions, we show that one can search for kernels of the relevant quadratic forms by maximizing the mutual information between the stimulus energy and the arrival times of action potentials. Simple implementations of this idea successfully recover the underlying properties of model neurons even when the number of parameters in the kernel is comparable to the number of action potentials and stimuli are completely natural. We explore several generalizations that allow us to incorporate plausible structure into the kernel and thereby restrict the number of parameters. We hope that this approach will add significantly to the set of tools available for the analysis of neural responses to complex, naturalistic stimuli.

[1]  C. Gross Genealogy of the “Grandmother Cell” , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[2]  D. H. Johnson,et al.  The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. , 1980, The Journal of the Acoustical Society of America.

[3]  Eero P. Simoncelli,et al.  Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis. , 2006, Journal of vision.

[4]  R. Shapley,et al.  The nonlinear pathway of Y ganglion cells in the cat retina , 1979, The Journal of general physiology.

[5]  Tomás Gedeon,et al.  Effects of stimulus transformations on estimates of sensory neuron selectivity , 2006, Journal of Computational Neuroscience.

[6]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[7]  Tatyana O. Sharpee,et al.  Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models , 2011, PLoS Comput. Biol..

[8]  M R DeWeese,et al.  How to measure the information gained from one symbol. , 1999, Network.

[9]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[11]  M. Sahani,et al.  The Consequences of Response Nonlinearities for Interpretation of Spectrotemporal Receptive Fields , 2008, The Journal of Neuroscience.

[12]  P. Z. Marmarelis,et al.  Analysis of Physiological Systems: The White-Noise Approach , 2011 .

[13]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[14]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.

[15]  Shih-Cheng Yen,et al.  Spatial and temporal jitter distort estimated functional properties of visual sensory neurons , 2009, Journal of Computational Neuroscience.

[16]  J. Victor The dynamics of the cat retinal Y cell subunit. , 1988, The Journal of physiology.

[17]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[18]  G. C. Wick The Evaluation of the Collision Matrix , 1950 .

[19]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[20]  Julian J. Bussgang,et al.  Crosscorrelation functions of amplitude-distorted gaussian signals , 1952 .

[21]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[22]  Eero P. Simoncelli,et al.  Spike-triggered characterization of excitatory and suppressive stimulus dimensions in monkey V1 , 2004, Neurocomputing.

[23]  Adrienne L. Fairhall,et al.  What Causes a Neuron to Spike? , 2003, Neural Computation.

[24]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[25]  W. Bialek,et al.  Features and dimensions: Motion estimation in fly vision , 2005, q-bio/0505003.

[26]  L. Abbott,et al.  Rethinking the taxonomy of visual neurons , 2002, Nature Neuroscience.

[27]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[28]  Olivier Marre,et al.  Features and functions of nonlinear spatial integration by retinal ganglion cells , 2012, Journal of Physiology-Paris.

[29]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[30]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[31]  Lewis-Sigler Learning quadratic receptive fields from neural responses to natural signals: information theoretic and likelihood methods , 2012 .

[32]  Thane Fremouw,et al.  Sound representation methods for spectro-temporal receptive field estimation , 2006, Journal of Computational Neuroscience.

[33]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[34]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[36]  Vijay Balasubramanian,et al.  Natural Images from the Birthplace of the Human Eye , 2011, PloS one.

[37]  J. Victor Analyzing receptive fields, classification images and functional images: challenges with opportunities for synergy , 2005, Nature Neuroscience.

[38]  M. Ruggero,et al.  Wiener-kernel analysis of responses to noise of chinchilla auditory-nerve fibers. , 2005, Journal of neurophysiology.

[39]  A. Palmer,et al.  Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells , 1986, Hearing Research.

[40]  T. Gollisch Estimating receptive fields in the presence of spike-time jitter , 2006, Network.

[41]  H. Barlow,et al.  Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? , 1972, Perception.

[42]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[43]  Tatyana O. Sharpee,et al.  Minimal Models of Multidimensional Computations , 2011, PLoS Comput. Biol..

[44]  L. Paninski Convergence Properties of Some Spike-Triggered Analysis Techniques , 2002 .

[45]  A. Hudspeth,et al.  Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.